The Truth About Ground Truth: Label Noise in Human-Generated Reference Data

R. Hänsch, O. Hellwich
{"title":"The Truth About Ground Truth: Label Noise in Human-Generated Reference Data","authors":"R. Hänsch, O. Hellwich","doi":"10.1109/IGARSS.2019.8898003","DOIUrl":null,"url":null,"abstract":"Due to the increasing amount of remotely sensed data, methods for its automatic interpretation become more and more important. Corresponding supervised learning techniques, however, strongly depend on the availability of training data, i.e. data where measurements and labels are provided simultaneously. The creation of reference data for large data sets is very challenging and approaches addressing this task often introduce a significant amount of label noise. While other works focused on the influence of label noise on the training process, this paper studies the impact on the evaluation and shows that the corresponding effects are even more adverse.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"101 1","pages":"5594-5597"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Due to the increasing amount of remotely sensed data, methods for its automatic interpretation become more and more important. Corresponding supervised learning techniques, however, strongly depend on the availability of training data, i.e. data where measurements and labels are provided simultaneously. The creation of reference data for large data sets is very challenging and approaches addressing this task often introduce a significant amount of label noise. While other works focused on the influence of label noise on the training process, this paper studies the impact on the evaluation and shows that the corresponding effects are even more adverse.
关于地面真相的真相:人为参考数据中的标签噪音
随着遥感数据量的不断增加,遥感数据的自动解译方法变得越来越重要。然而,相应的监督学习技术在很大程度上依赖于训练数据的可用性,即同时提供测量和标签的数据。为大型数据集创建参考数据是非常具有挑战性的,解决这一任务的方法通常会引入大量的标签噪声。其他的研究都集中在标签噪声对训练过程的影响上,而本文研究了标签噪声对评价的影响,并表明相应的影响更为不利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信