{"title":"Feynman–Kac formulas for regime-switching jump diffusions and their applications","authors":"Chao Zhu, G. Yin, Nicholas A. Baran","doi":"10.1080/17442508.2015.1019884","DOIUrl":null,"url":null,"abstract":"This work develops Feynman–Kac formulas for a class of regime-switching jump diffusion processes, in which the jump part is driven by a Poisson random measure associated with a general Lévy process and the switching part depends on the jump diffusion processes. Under broad conditions, the connections of such stochastic processes and the corresponding partial integro-differential equations are established. Related initial, terminal and boundary value problems are also treated. Moreover, based on weak convergence of probability measures, it is demonstrated that a sequence of random variables related to the regime-switching jump diffusion process converges in distribution to the arcsine law.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"21 1","pages":"1000 - 1032"},"PeriodicalIF":0.8000,"publicationDate":"2015-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2015.1019884","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 34
Abstract
This work develops Feynman–Kac formulas for a class of regime-switching jump diffusion processes, in which the jump part is driven by a Poisson random measure associated with a general Lévy process and the switching part depends on the jump diffusion processes. Under broad conditions, the connections of such stochastic processes and the corresponding partial integro-differential equations are established. Related initial, terminal and boundary value problems are also treated. Moreover, based on weak convergence of probability measures, it is demonstrated that a sequence of random variables related to the regime-switching jump diffusion process converges in distribution to the arcsine law.
期刊介绍:
Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects.
Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly.
In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.