THE COLORED JONES POLYNOMIAL OF THE FIGURE-EIGHT KNOT AND A QUANTUM MODULARITY

Pub Date : 2022-09-16 DOI:10.4153/s0008414x23000172
H. Murakami
{"title":"THE COLORED JONES POLYNOMIAL OF THE FIGURE-EIGHT KNOT AND A QUANTUM MODULARITY","authors":"H. Murakami","doi":"10.4153/s0008414x23000172","DOIUrl":null,"url":null,"abstract":"We study the asymptotic behavior of the $N$-dimensional colored Jones polynomial of the figure-eight knot evaluated at $\\exp\\bigl((u+2p\\pi\\i)/N\\bigr)$, where $u$ is a small real number and $p$ is a positive integer. We show that it is asymptotically equivalent to the product of the $p$-dimensional colored Jones polynomial evaluated at $\\exp\\bigl(4N\\pi^2/(u+2p\\pi\\i)\\bigr)$ and a term that grows exponentially with growth rate determined by the Chern--Simons invariant. This indicates a quantum modularity of the colored Jones polynomial.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008414x23000172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study the asymptotic behavior of the $N$-dimensional colored Jones polynomial of the figure-eight knot evaluated at $\exp\bigl((u+2p\pi\i)/N\bigr)$, where $u$ is a small real number and $p$ is a positive integer. We show that it is asymptotically equivalent to the product of the $p$-dimensional colored Jones polynomial evaluated at $\exp\bigl(4N\pi^2/(u+2p\pi\i)\bigr)$ and a term that grows exponentially with growth rate determined by the Chern--Simons invariant. This indicates a quantum modularity of the colored Jones polynomial.
分享
查看原文
数字8结的彩色琼斯多项式和量子模性
我们研究了在$\exp\bigl((u+2p\pi\i)/N\bigr)$处求值的8字形结的$N$维彩色Jones多项式的渐近行为,其中$u$是一个小实数,$p$是一个正整数。我们证明了它是渐近等价于$p$维彩色琼斯多项式在$\exp\bigl(4N\pi^2/(u+2p\pi\i)\bigr)$处的值与一个由Chern—Simons不变量决定的增长率指数增长的项的乘积。这表明了有色琼斯多项式的量子模性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信