Big Graph Analytics Systems

D. Yan, Yingyi Bu, Yuanyuan Tian, A. Deshpande, James Cheng
{"title":"Big Graph Analytics Systems","authors":"D. Yan, Yingyi Bu, Yuanyuan Tian, A. Deshpande, James Cheng","doi":"10.1145/2882903.2912566","DOIUrl":null,"url":null,"abstract":"In recent years we have witnessed a surging interest in developing Big Graph processing systems. To date, tens of Big Graph systems have been proposed. This tutorial provides a timely and comprehensive review of existing Big Graph systems, and summarizes their pros and cons from various perspectives. We start from the existing vertex-centric systems, which which a programmer thinks intuitively like a vertex when developing parallel graph algorithms. We then introduce systems that adopt other computation paradigms and execution settings. The topics covered in this tutorial include programming models and algorithm design, computation models, communication mechanisms, out-of-core support, fault tolerance, dynamic graph support, and so on. We also highlight future research opportunities on Big Graph analytics.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2912566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In recent years we have witnessed a surging interest in developing Big Graph processing systems. To date, tens of Big Graph systems have been proposed. This tutorial provides a timely and comprehensive review of existing Big Graph systems, and summarizes their pros and cons from various perspectives. We start from the existing vertex-centric systems, which which a programmer thinks intuitively like a vertex when developing parallel graph algorithms. We then introduce systems that adopt other computation paradigms and execution settings. The topics covered in this tutorial include programming models and algorithm design, computation models, communication mechanisms, out-of-core support, fault tolerance, dynamic graph support, and so on. We also highlight future research opportunities on Big Graph analytics.
大图分析系统
近年来,我们见证了对开发大图处理系统的兴趣激增。到目前为止,已经提出了数十个大图系统。本教程提供了对现有Big Graph系统的及时和全面的回顾,并从不同的角度总结了它们的优缺点。我们从现有的以顶点为中心的系统开始,程序员在开发并行图算法时直观地将其视为顶点。然后介绍采用其他计算范式和执行设置的系统。本教程涵盖的主题包括编程模型和算法设计、计算模型、通信机制、核外支持、容错、动态图支持等等。我们还强调了大图分析的未来研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信