Christian Petersen, O. Strand, E. Johansen, Dag Almar Hansen, D. Fredheim, P. Ohlckers
{"title":"PACT - One Step Closer to Well Control Autonomy","authors":"Christian Petersen, O. Strand, E. Johansen, Dag Almar Hansen, D. Fredheim, P. Ohlckers","doi":"10.2118/206274-ms","DOIUrl":null,"url":null,"abstract":"\n Pressure control have been going through steps of evolution. In the highlight of safety, reliability and control, the systems have been sturdy withstanding massive pressure and environmental impact to last the time of estimated life of well. Design have been emphasizing on sturdiness rather than intelligence and autonomy. Time moves on, sophistication levels rise in all parts of our industry. Sustainability and lower environmental impact of solutions grow from the young into business planning and democratic policies. Control lines of hydraulic systems posed risks to the environment as well as being costly in structure and maintenance. Condition monitoring helped ensure better maintenance planning and lowered the risk of breakdown, but still left a lot to be desired reaching for self-contained, self learning systems with low installation and maintenance costs, yet the safest approach.\n The next steps were taken towards electrification and digitization of pressure control systems, making short and undetermined strides over almost two decades. Still, the standards are not following the pace of technological progress. And when someone dares to pilot or demonstrate modern technology applied, the installations and operational procedures of the systems still need expensive distributed lines of power, of signals and control systems to ensure a swift and safe operation. The fly-by-wire principle applied in oil & gas is the operate-by-costly-technology-and-environmental-impact-lines.\n With the introduction of new and breaking technology in energy harvesting and storage, the playing field opens up towards fully automated systems with no need for expensive power lines or hydraulic control lines. The safety will be taken care of also off-grid, fully digitized. Should cabling of instrument signals be damaged, the system of tomorrow will still be up to par with the Safety Integrity Levels needed. New super-capacitors with an extra dense storage capacity being developed in partnership between the industry and the University of southeast Norway combined with an extremely low energy consuming actuation system with the fastest failsafe mechanism ever will ensure safety in all modes of operation, even with all lines down or consumed by flames. The paper aims to show how the technology works and underline why it will take a place in the future of well control and production.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206274-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pressure control have been going through steps of evolution. In the highlight of safety, reliability and control, the systems have been sturdy withstanding massive pressure and environmental impact to last the time of estimated life of well. Design have been emphasizing on sturdiness rather than intelligence and autonomy. Time moves on, sophistication levels rise in all parts of our industry. Sustainability and lower environmental impact of solutions grow from the young into business planning and democratic policies. Control lines of hydraulic systems posed risks to the environment as well as being costly in structure and maintenance. Condition monitoring helped ensure better maintenance planning and lowered the risk of breakdown, but still left a lot to be desired reaching for self-contained, self learning systems with low installation and maintenance costs, yet the safest approach.
The next steps were taken towards electrification and digitization of pressure control systems, making short and undetermined strides over almost two decades. Still, the standards are not following the pace of technological progress. And when someone dares to pilot or demonstrate modern technology applied, the installations and operational procedures of the systems still need expensive distributed lines of power, of signals and control systems to ensure a swift and safe operation. The fly-by-wire principle applied in oil & gas is the operate-by-costly-technology-and-environmental-impact-lines.
With the introduction of new and breaking technology in energy harvesting and storage, the playing field opens up towards fully automated systems with no need for expensive power lines or hydraulic control lines. The safety will be taken care of also off-grid, fully digitized. Should cabling of instrument signals be damaged, the system of tomorrow will still be up to par with the Safety Integrity Levels needed. New super-capacitors with an extra dense storage capacity being developed in partnership between the industry and the University of southeast Norway combined with an extremely low energy consuming actuation system with the fastest failsafe mechanism ever will ensure safety in all modes of operation, even with all lines down or consumed by flames. The paper aims to show how the technology works and underline why it will take a place in the future of well control and production.