{"title":"A quantitative strong unique continuation property of a diffusive SIS model","authors":"Taige Wang, Dihong Xu","doi":"10.3934/dcdss.2022024","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This article is concerned with a strong unique continuation property of solutions for a diffusive SIS (Susceptible - Infected - Susceptible, or SI) model, which belongs to a type of observability inequalities in a time interval <inline-formula><tex-math id=\"M1\">\\begin{document}$ [0, T] $\\end{document}</tex-math></inline-formula>. That is, if one can observe solution on a convex and connected bounded open set <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\omega $\\end{document}</tex-math></inline-formula> in a bounded domain <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula> at time <inline-formula><tex-math id=\"M4\">\\begin{document}$ t = T $\\end{document}</tex-math></inline-formula>, then the norms of solution on <inline-formula><tex-math id=\"M5\">\\begin{document}$ [0,T) $\\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula> are observable. In our discussion, boundary condition is a homogeneous Dirichlet one (hostile boundary condition).</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2022024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article is concerned with a strong unique continuation property of solutions for a diffusive SIS (Susceptible - Infected - Susceptible, or SI) model, which belongs to a type of observability inequalities in a time interval \begin{document}$ [0, T] $\end{document}. That is, if one can observe solution on a convex and connected bounded open set \begin{document}$ \omega $\end{document} in a bounded domain \begin{document}$ \Omega $\end{document} at time \begin{document}$ t = T $\end{document}, then the norms of solution on \begin{document}$ [0,T) $\end{document} on \begin{document}$ \Omega $\end{document} are observable. In our discussion, boundary condition is a homogeneous Dirichlet one (hostile boundary condition).
This article is concerned with a strong unique continuation property of solutions for a diffusive SIS (Susceptible - Infected - Susceptible, or SI) model, which belongs to a type of observability inequalities in a time interval \begin{document}$ [0, T] $\end{document}. That is, if one can observe solution on a convex and connected bounded open set \begin{document}$ \omega $\end{document} in a bounded domain \begin{document}$ \Omega $\end{document} at time \begin{document}$ t = T $\end{document}, then the norms of solution on \begin{document}$ [0,T) $\end{document} on \begin{document}$ \Omega $\end{document} are observable. In our discussion, boundary condition is a homogeneous Dirichlet one (hostile boundary condition).