Analysis of Ensemble of Neural Networks and Fuzzy Logic Classification in Process of Semantic Segmentation of Martian Geomorphological Settings

Kamil Choromański, J. Kozakiewicz, M. Sobucki, M. Pilarska-Mazurek, R. Olszewski
{"title":"Analysis of Ensemble of Neural Networks and Fuzzy Logic Classification in Process of Semantic Segmentation of Martian Geomorphological Settings","authors":"Kamil Choromański, J. Kozakiewicz, M. Sobucki, M. Pilarska-Mazurek, R. Olszewski","doi":"10.5220/0011315200003277","DOIUrl":null,"url":null,"abstract":": Deep learning analysis of multisource Martian data (both from orbiter and rover) allows for the separation and classification of different geomorphological settings. However, it is difficult to determine the optimal neural network model for unambiguous semantic segmentation due to the specificity of Martian data and blurring of the boundary of individual settings (which is its immanent property). In this paper, the authors describe several variants of multisource deep learning processing system for Martian data and develop a methodology for semantic segmentation of geomorphological settings for this planet based on the combination of selected solutions output. Network ensemble with use of the weighted averaging method improved results comparing to single network. The paper also discusses the decision rule extraction method of individual Martian geomorphological landforms using fuzzy inference systems. The results obtained using FIS tools allow for the extraction of single geomorphological forms, such as ripples.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"40 1","pages":"184-192"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011315200003277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Deep learning analysis of multisource Martian data (both from orbiter and rover) allows for the separation and classification of different geomorphological settings. However, it is difficult to determine the optimal neural network model for unambiguous semantic segmentation due to the specificity of Martian data and blurring of the boundary of individual settings (which is its immanent property). In this paper, the authors describe several variants of multisource deep learning processing system for Martian data and develop a methodology for semantic segmentation of geomorphological settings for this planet based on the combination of selected solutions output. Network ensemble with use of the weighted averaging method improved results comparing to single network. The paper also discusses the decision rule extraction method of individual Martian geomorphological landforms using fuzzy inference systems. The results obtained using FIS tools allow for the extraction of single geomorphological forms, such as ripples.
火星地貌设置语义分割过程中神经网络集成与模糊逻辑分类分析
:对多源火星数据(包括轨道飞行器和漫游者)进行深度学习分析,可以对不同的地貌环境进行分离和分类。然而,由于火星数据的特殊性和个体设置边界的模糊性(这是其固有属性),很难确定用于无二义语义分割的最佳神经网络模型。在本文中,作者描述了用于火星数据的多源深度学习处理系统的几种变体,并基于选择的解决方案输出的组合开发了一种用于该星球地貌设置语义分割的方法。使用加权平均方法的网络集成与单个网络相比改善了结果。本文还讨论了利用模糊推理系统提取火星个别地貌地貌的决策规则方法。使用FIS工具获得的结果允许提取单一的地貌形式,如波纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信