Native Type Theory

Christian Williams, Michael Stay
{"title":"Native Type Theory","authors":"Christian Williams, Michael Stay","doi":"10.4204/EPTCS.372.9","DOIUrl":null,"url":null,"abstract":"Native type systems are those in which type constructors are derived from term constructors, as well as the constructors of predicate logic and intuitionistic type theory. We present a method to construct native type systems for a broad class of languages, λ -theories with equality, by embedding such a theory into the internal language of its topos of presheaves. Native types provide total specification of the structure of terms; and by internalizing transition systems, native type systems serve to reason about structure and behavior simultaneously. The construction is functorial, thereby providing a shared framework of higher-order reasoning for many languages, including programming languages.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"10 1","pages":"116-132"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.372.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Native type systems are those in which type constructors are derived from term constructors, as well as the constructors of predicate logic and intuitionistic type theory. We present a method to construct native type systems for a broad class of languages, λ -theories with equality, by embedding such a theory into the internal language of its topos of presheaves. Native types provide total specification of the structure of terms; and by internalizing transition systems, native type systems serve to reason about structure and behavior simultaneously. The construction is functorial, thereby providing a shared framework of higher-order reasoning for many languages, including programming languages.
原生类型理论
原生类型系统是指类型构造函数派生自术语构造函数、谓词逻辑和直觉型理论的构造函数的类型系统。我们提出了一种方法,通过将λ -理论嵌入到其presheaves拓扑的内部语言中,为一类广泛的语言构造具有相等性的本地类型系统。原生类型提供了术语结构的总体规范;通过内化转换系统,原生类型系统可以同时对结构和行为进行推理。这种构造是功能性的,因此为许多语言(包括编程语言)提供了一个高阶推理的共享框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信