Identifying the Key Development Areas for Small Modular Reactors

Q4 Energy
S. Soloviev, D. G. Zaryugin, S. G. Kalyakin, Sergei Terent’evich Leskin
{"title":"Identifying the Key Development Areas for Small Modular Reactors","authors":"S. Soloviev, D. G. Zaryugin, S. G. Kalyakin, Sergei Terent’evich Leskin","doi":"10.26583/npe.2022.1.02","DOIUrl":null,"url":null,"abstract":"In paper considered Small Modular Reactors (SMR) main advantages of design such as: In paper considered possible areas of SMR application, including consumer demands, which are as follows: power supply of remote (Arctic) territories, replacement (renovation) of old coal generation, production of high\"potential heat and hydrogen for industrial consumers and other applications. The necessity of development and implementation of a new technological platform for nuclear energy based on SMRs is shown in order to implement the global decarbonization of the world economy by means of significant expansion of nuclear energy technologies application. This technological platform should be developed in addition to the currently developing one based on the closed nuclear fuel cycle with fast reactors (solving the problem of fuel supply and waste disposal) and also developing technological platform of controlled thermonuclear fusion(solving the problem of global energy supply in the long term). The new technological platform should be created on the bases of broad international cooperation with creation of international consortiums. An experimental testing facility (research reactor)is proposed to be created for the development of captive hydrogen (heat)production technologies for industrial consumers as well as other technologies for the application of small modular reactors.","PeriodicalId":37826,"journal":{"name":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/npe.2022.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1

Abstract

In paper considered Small Modular Reactors (SMR) main advantages of design such as: In paper considered possible areas of SMR application, including consumer demands, which are as follows: power supply of remote (Arctic) territories, replacement (renovation) of old coal generation, production of high"potential heat and hydrogen for industrial consumers and other applications. The necessity of development and implementation of a new technological platform for nuclear energy based on SMRs is shown in order to implement the global decarbonization of the world economy by means of significant expansion of nuclear energy technologies application. This technological platform should be developed in addition to the currently developing one based on the closed nuclear fuel cycle with fast reactors (solving the problem of fuel supply and waste disposal) and also developing technological platform of controlled thermonuclear fusion(solving the problem of global energy supply in the long term). The new technological platform should be created on the bases of broad international cooperation with creation of international consortiums. An experimental testing facility (research reactor)is proposed to be created for the development of captive hydrogen (heat)production technologies for industrial consumers as well as other technologies for the application of small modular reactors.
确定小型模块化反应堆的关键发展领域
在论文中考虑了小型模块化反应堆(SMR)设计的主要优势,如:在论文中考虑了SMR应用的可能领域,包括消费者的需求,如下:偏远(北极)地区的电力供应,旧煤发电的替代(改造),为工业消费者和其他应用生产高“潜在热和氢”。为了通过大规模扩大核能技术的应用,实现世界经济的全球脱碳,提出了开发和实施基于小型反应堆的核能新技术平台的必要性。除了目前正在开发的基于快堆闭式核燃料循环的技术平台(解决燃料供应和废物处理问题)之外,还应该开发可控热核聚变技术平台(长期解决全球能源供应问题)。新的技术平台应该建立在广泛的国际合作的基础上,建立国际财团。建议建立一个实验测试设施(研究反应堆),以开发供工业消费者使用的自备氢(热)生产技术以及用于小型模块化反应堆的其他技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika Energy-Nuclear Energy and Engineering
CiteScore
0.40
自引率
0.00%
发文量
30
期刊介绍: The scientific journal Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika is included in the Scopus database. Publisher country is RU. The main subject areas of published articles are Nuclear Energy and Engineering, Физика, Приборостроение, метрология и информационно-измерительные приборы и системы, Информатика, вычислительная техника и управление, Энергетика. Before sending a scientific article, we recommend you to read the section For authors. This will allow you to prepare an article better for publication, to make it more interesting for the readers and useful for the scientific community. By following these steps, you will greatly increase the likelihood of your scientific article publishing in journals included in international citation systems (e.g., Scopus). Then you may choose a different journal, select the journal included to list of SAC Russia journal list, or send your scientific work for review and publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信