Quasi-optimal hp-finite element refinements towards singularities via deep neural network prediction

Tomasz Sluzalec, R. Grzeszczuk, Sergio Rojas, W. Dzwinel, M. Paszyński
{"title":"Quasi-optimal hp-finite element refinements towards singularities via deep neural network prediction","authors":"Tomasz Sluzalec, R. Grzeszczuk, Sergio Rojas, W. Dzwinel, M. Paszyński","doi":"10.48550/arXiv.2209.05844","DOIUrl":null,"url":null,"abstract":"We show how to construct the deep neural network (DNN) expert to predict quasi-optimal $hp$-refinements for a given computational problem. The main idea is to train the DNN expert during executing the self-adaptive $hp$-finite element method ($hp$-FEM) algorithm and use it later to predict further $hp$ refinements. For the training, we use a two-grid paradigm self-adaptive $hp$-FEM algorithm. It employs the fine mesh to provide the optimal $hp$ refinements for coarse mesh elements. We aim to construct the DNN expert to identify quasi-optimal $hp$ refinements of the coarse mesh elements. During the training phase, we use the direct solver to obtain the solution for the fine mesh to guide the optimal refinements over the coarse mesh element. After training, we turn off the self-adaptive $hp$-FEM algorithm and continue with quasi-optimal refinements as proposed by the DNN expert trained. We test our method on three-dimensional Fichera and two-dimensional L-shaped domain problems. We verify the convergence of the numerical accuracy with respect to the mesh size. We show that the exponential convergence delivered by the self-adaptive $hp$-FEM can be preserved if we continue refinements with a properly trained DNN expert. Thus, in this paper, we show that from the self-adaptive $hp$-FEM it is possible to train the DNN expert the location of the singularities, and continue with the selection of the quasi-optimal $hp$ refinements, preserving the exponential convergence of the method.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.05844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We show how to construct the deep neural network (DNN) expert to predict quasi-optimal $hp$-refinements for a given computational problem. The main idea is to train the DNN expert during executing the self-adaptive $hp$-finite element method ($hp$-FEM) algorithm and use it later to predict further $hp$ refinements. For the training, we use a two-grid paradigm self-adaptive $hp$-FEM algorithm. It employs the fine mesh to provide the optimal $hp$ refinements for coarse mesh elements. We aim to construct the DNN expert to identify quasi-optimal $hp$ refinements of the coarse mesh elements. During the training phase, we use the direct solver to obtain the solution for the fine mesh to guide the optimal refinements over the coarse mesh element. After training, we turn off the self-adaptive $hp$-FEM algorithm and continue with quasi-optimal refinements as proposed by the DNN expert trained. We test our method on three-dimensional Fichera and two-dimensional L-shaped domain problems. We verify the convergence of the numerical accuracy with respect to the mesh size. We show that the exponential convergence delivered by the self-adaptive $hp$-FEM can be preserved if we continue refinements with a properly trained DNN expert. Thus, in this paper, we show that from the self-adaptive $hp$-FEM it is possible to train the DNN expert the location of the singularities, and continue with the selection of the quasi-optimal $hp$ refinements, preserving the exponential convergence of the method.
基于深度神经网络预测的准最优hp有限元奇异点优化
我们展示了如何构建深度神经网络(DNN)专家来预测给定计算问题的准最优$hp$精细化。主要思想是在执行自适应$hp$-有限元方法($hp$-FEM)算法期间训练DNN专家,并在以后使用它来预测进一步的$hp$改进。对于训练,我们使用两网格范式自适应$hp$-FEM算法。它采用细网格为粗网格元素提供最佳的$hp$细化。我们的目标是构建DNN专家来识别粗网格单元的准最优$hp$细化。在训练阶段,我们使用直接求解器获得细网格的解,以指导粗网格单元的最优细化。训练结束后,我们关闭自适应的$hp$-FEM算法,并继续进行训练后的DNN专家提出的准最优细化。我们在三维Fichera和二维l形域问题上测试了我们的方法。我们验证了数值精度对网格尺寸的收敛性。我们表明,如果我们继续与经过适当训练的DNN专家进行改进,则可以保留自适应$hp$-FEM提供的指数收敛性。因此,在本文中,我们证明了从自适应$hp$-FEM中可以训练DNN专家奇异点的位置,并继续选择拟最优$hp$精化,同时保持方法的指数收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信