{"title":"Ensemble Techniques-Based Software Fault Prediction in an Open-Source Project","authors":"Wasiur Rhmann, Gufran Ahmad Ansari","doi":"10.4018/ijossp.2020040103","DOIUrl":null,"url":null,"abstract":"Software engineering repositories have been attracted by researchers to mine useful information about the different quality attributes of the software. These repositories have been helpful to software professionals to efficiently allocate various resources in the life cycle of software development. Software fault prediction is a quality assurance activity. In fault prediction, software faults are predicted before actual software testing. As exhaustive software testing is impossible, the use of software fault prediction models can help the proper allocation of testing resources. Various machine learning techniques have been applied to create software fault prediction models. In this study, ensemble models are used for software fault prediction. Change metrics-based data are collected for an open-source android project from GIT repository and code-based metrics data are obtained from PROMISE data repository and datasets kc1, kc2, cm1, and pc1 are used for experimental purpose. Results showed that ensemble models performed better compared to machine learning and hybrid search-based algorithms. Bagging ensemble was found to be more effective in the prediction of faults in comparison to soft and hard voting.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"104 1","pages":"33-48"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.2020040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6
Abstract
Software engineering repositories have been attracted by researchers to mine useful information about the different quality attributes of the software. These repositories have been helpful to software professionals to efficiently allocate various resources in the life cycle of software development. Software fault prediction is a quality assurance activity. In fault prediction, software faults are predicted before actual software testing. As exhaustive software testing is impossible, the use of software fault prediction models can help the proper allocation of testing resources. Various machine learning techniques have been applied to create software fault prediction models. In this study, ensemble models are used for software fault prediction. Change metrics-based data are collected for an open-source android project from GIT repository and code-based metrics data are obtained from PROMISE data repository and datasets kc1, kc2, cm1, and pc1 are used for experimental purpose. Results showed that ensemble models performed better compared to machine learning and hybrid search-based algorithms. Bagging ensemble was found to be more effective in the prediction of faults in comparison to soft and hard voting.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.