Ensemble Techniques-Based Software Fault Prediction in an Open-Source Project

Q4 Computer Science
Wasiur Rhmann, Gufran Ahmad Ansari
{"title":"Ensemble Techniques-Based Software Fault Prediction in an Open-Source Project","authors":"Wasiur Rhmann, Gufran Ahmad Ansari","doi":"10.4018/ijossp.2020040103","DOIUrl":null,"url":null,"abstract":"Software engineering repositories have been attracted by researchers to mine useful information about the different quality attributes of the software. These repositories have been helpful to software professionals to efficiently allocate various resources in the life cycle of software development. Software fault prediction is a quality assurance activity. In fault prediction, software faults are predicted before actual software testing. As exhaustive software testing is impossible, the use of software fault prediction models can help the proper allocation of testing resources. Various machine learning techniques have been applied to create software fault prediction models. In this study, ensemble models are used for software fault prediction. Change metrics-based data are collected for an open-source android project from GIT repository and code-based metrics data are obtained from PROMISE data repository and datasets kc1, kc2, cm1, and pc1 are used for experimental purpose. Results showed that ensemble models performed better compared to machine learning and hybrid search-based algorithms. Bagging ensemble was found to be more effective in the prediction of faults in comparison to soft and hard voting.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"104 1","pages":"33-48"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.2020040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6

Abstract

Software engineering repositories have been attracted by researchers to mine useful information about the different quality attributes of the software. These repositories have been helpful to software professionals to efficiently allocate various resources in the life cycle of software development. Software fault prediction is a quality assurance activity. In fault prediction, software faults are predicted before actual software testing. As exhaustive software testing is impossible, the use of software fault prediction models can help the proper allocation of testing resources. Various machine learning techniques have been applied to create software fault prediction models. In this study, ensemble models are used for software fault prediction. Change metrics-based data are collected for an open-source android project from GIT repository and code-based metrics data are obtained from PROMISE data repository and datasets kc1, kc2, cm1, and pc1 are used for experimental purpose. Results showed that ensemble models performed better compared to machine learning and hybrid search-based algorithms. Bagging ensemble was found to be more effective in the prediction of faults in comparison to soft and hard voting.
基于集成技术的开源项目软件故障预测
软件工程存储库被研究人员所吸引,以挖掘有关软件不同质量属性的有用信息。这些存储库有助于软件专业人员在软件开发生命周期中有效地分配各种资源。软件故障预测是一项质量保证活动。在故障预测中,在实际软件测试之前对软件故障进行预测。由于详尽的软件测试是不可能的,使用软件故障预测模型可以帮助正确分配测试资源。各种机器学习技术已被应用于创建软件故障预测模型。本研究将集成模型用于软件故障预测。基于变更指标的数据从GIT存储库中收集,基于代码的指标数据从PROMISE数据存储库中获取,数据集kc1, kc2, cm1和pc1用于实验目的。结果表明,与机器学习和基于混合搜索的算法相比,集成模型表现更好。与软投票和硬投票相比,套袋集合在断层预测方面更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信