General Sum-Connectivity Index with a = 1 for Trees and Unicyclic Graphs with k Pendants

Rozica-Maria Tache, I. Tomescu
{"title":"General Sum-Connectivity Index with a = 1 for Trees and Unicyclic Graphs with k Pendants","authors":"Rozica-Maria Tache, I. Tomescu","doi":"10.1109/SYNASC.2015.55","DOIUrl":null,"url":null,"abstract":"One of the newest molecular descriptors, the general sum-connectivity index of a graph G is defined as χ<sub>α</sub>(G) = Σ<sub>uvϵE(G)</sub>(d(u) + d(v))α, where d(u) denotes the degree of vertex u in G and is a real number. The aim of this paper is to determine the trees and the unicyclic graphs with k pendant vertices that maximize the general sum-connectivity index for α ≥ 1,with 2 ≤ k ≤ n for trees and 0 ≤ k ≤ n - 3 for unicyclic graphs.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"82 1","pages":"307-311"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

One of the newest molecular descriptors, the general sum-connectivity index of a graph G is defined as χα(G) = ΣuvϵE(G)(d(u) + d(v))α, where d(u) denotes the degree of vertex u in G and is a real number. The aim of this paper is to determine the trees and the unicyclic graphs with k pendant vertices that maximize the general sum-connectivity index for α ≥ 1,with 2 ≤ k ≤ n for trees and 0 ≤ k ≤ n - 3 for unicyclic graphs.
具有k个链的树和单环图的a = 1的一般和连通性索引
图G的一般和连通性指标是最新的分子描述符之一,定义为χα(G) = ΣuvϵE(G)(d(u) + d(v))α,其中d(u)表示顶点u在G中的度,为实数。本文的目的是确定在α≥1,2≤k≤n, 0≤k≤n - 3的情况下,有k个垂顶点的树和单环图的一般和连通性指数最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信