GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server

Henggang Cui, H. Zhang, G. Ganger, Phillip B. Gibbons, E. Xing
{"title":"GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server","authors":"Henggang Cui, H. Zhang, G. Ganger, Phillip B. Gibbons, E. Xing","doi":"10.1145/2901318.2901323","DOIUrl":null,"url":null,"abstract":"Large-scale deep learning requires huge computational resources to train a multi-layer neural network. Recent systems propose using 100s to 1000s of machines to train networks with tens of layers and billions of connections. While the computation involved can be done more efficiently on GPUs than on more traditional CPU cores, training such networks on a single GPU is too slow and training on distributed GPUs can be inefficient, due to data movement overheads, GPU stalls, and limited GPU memory. This paper describes a new parameter server, called GeePS, that supports scalable deep learning across GPUs distributed among multiple machines, overcoming these obstacles. We show that GeePS enables a state-of-the-art single-node GPU implementation to scale well, such as to 13 times the number of training images processed per second on 16 machines (relative to the original optimized single-node code). Moreover, GeePS achieves a higher training throughput with just four GPU machines than that a state-of-the-art CPU-only system achieves with 108 machines.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"74 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"310","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901318.2901323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 310

Abstract

Large-scale deep learning requires huge computational resources to train a multi-layer neural network. Recent systems propose using 100s to 1000s of machines to train networks with tens of layers and billions of connections. While the computation involved can be done more efficiently on GPUs than on more traditional CPU cores, training such networks on a single GPU is too slow and training on distributed GPUs can be inefficient, due to data movement overheads, GPU stalls, and limited GPU memory. This paper describes a new parameter server, called GeePS, that supports scalable deep learning across GPUs distributed among multiple machines, overcoming these obstacles. We show that GeePS enables a state-of-the-art single-node GPU implementation to scale well, such as to 13 times the number of training images processed per second on 16 machines (relative to the original optimized single-node code). Moreover, GeePS achieves a higher training throughput with just four GPU machines than that a state-of-the-art CPU-only system achieves with 108 machines.
GeePS:分布式gpu上的可扩展深度学习,带有gpu专用参数服务器
大规模深度学习需要大量的计算资源来训练多层神经网络。最近的系统建议使用100到1000台机器来训练具有数百层和数十亿连接的网络。虽然涉及的计算在GPU上可以比在更传统的CPU内核上更有效地完成,但在单个GPU上训练这样的网络太慢,并且由于数据移动开销,GPU停滞和有限的GPU内存,在分布式GPU上训练可能效率低下。本文描述了一种新的参数服务器,称为GeePS,它支持跨分布在多台机器之间的gpu的可扩展深度学习,克服了这些障碍。我们表明,GeePS使最先进的单节点GPU实现能够很好地扩展,例如在16台机器上每秒处理的训练图像数量是13倍(相对于原始优化的单节点代码)。此外,GeePS仅使用4台GPU机器就能实现比仅使用108台机器的最先进的cpu系统更高的训练吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信