Dynamic, Tunable, and Conformal Wearable Compression Using Active Textiles

R. Granberry, Megan Clarke, R. Pettys-Baker, Heidi Woelfle, Crystal Compton, Amy Ross, Kirstyn M. Johnson, S. Padula, Surbhi Shah, J. Abel, B. Holschuh
{"title":"Dynamic, Tunable, and Conformal Wearable Compression Using Active Textiles","authors":"R. Granberry, Megan Clarke, R. Pettys-Baker, Heidi Woelfle, Crystal Compton, Amy Ross, Kirstyn M. Johnson, S. Padula, Surbhi Shah, J. Abel, B. Holschuh","doi":"10.1002/admt.202200467","DOIUrl":null,"url":null,"abstract":"New medical compression technologies that are simultaneously low‐profile, facile to don, and dynamic—applying medical compression only when needed—can expand the use of wearable compression, increase patient compliance, and lead to better medical outcomes. Dynamic and conformal wearable compression devices are presented that can be donned in a low‐stiffness state and transition into a high‐stiffness and, consequently, high‐compression state, on‐demand. These devices are enabled by active textiles developed from custom NiTi filaments that remain inactive at room temperature and accomplish actuation proximal to the human body surface. Further, these compression devices exploit NiTi material hysteresis to sustain a high‐compression state post‐heating and upon equilibrium with the body surface temperature for thermally‐comfortable, on‐body performance. Two case study examples—1) a consumer medical compression device and 2) a custom astronaut compression device—demonstrate the generalizability and flexibility of the engineering and design methods to develop a range of dynamic, tunable, and conformal compression devices with different goals and requirements. Further, this work demonstrates a roadmap for developing wearable systems that can accommodate a range of users without sacrificing system performance. This research opens doors for new NiTi‐based medical and consumer applications that interface with the body surface.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

New medical compression technologies that are simultaneously low‐profile, facile to don, and dynamic—applying medical compression only when needed—can expand the use of wearable compression, increase patient compliance, and lead to better medical outcomes. Dynamic and conformal wearable compression devices are presented that can be donned in a low‐stiffness state and transition into a high‐stiffness and, consequently, high‐compression state, on‐demand. These devices are enabled by active textiles developed from custom NiTi filaments that remain inactive at room temperature and accomplish actuation proximal to the human body surface. Further, these compression devices exploit NiTi material hysteresis to sustain a high‐compression state post‐heating and upon equilibrium with the body surface temperature for thermally‐comfortable, on‐body performance. Two case study examples—1) a consumer medical compression device and 2) a custom astronaut compression device—demonstrate the generalizability and flexibility of the engineering and design methods to develop a range of dynamic, tunable, and conformal compression devices with different goals and requirements. Further, this work demonstrates a roadmap for developing wearable systems that can accommodate a range of users without sacrificing system performance. This research opens doors for new NiTi‐based medical and consumer applications that interface with the body surface.
动态,可调,适形可穿戴压缩使用活性纺织品
新型医用压缩技术同时具有低调、易于穿戴和动态的特点——仅在需要时才进行医用压缩——可以扩大可穿戴式压缩的使用范围,提高患者的依从性,并带来更好的医疗结果。动态和保形可穿戴压缩装置可以在低刚度状态下佩戴,并根据需要过渡到高刚度和高压缩状态。这些装置是由定制NiTi长丝开发的活性纺织品实现的,这些纺织品在室温下保持不活性,并在接近人体表面的地方完成驱动。此外,这些压缩装置利用NiTi材料的迟滞来维持加热后的高压缩状态,并与身体表面温度平衡,以获得热舒适的身体性能。两个案例研究示例——1)消费者医疗压缩装置和2)定制宇航员压缩装置——展示了开发一系列具有不同目标和要求的动态、可调和保形压缩装置的工程和设计方法的通用性和灵活性。此外,这项工作展示了开发可穿戴系统的路线图,该系统可以在不牺牲系统性能的情况下适应一系列用户。这项研究为新的基于NiTi的医疗和消费应用打开了大门,这些应用与人体表面相连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信