Engineering Intelligent Nanosystems for Enhanced Medical Imaging

Guido T. van Moolenbroek, Tania Patiño, J. Llop, S. Sánchez
{"title":"Engineering Intelligent Nanosystems for Enhanced Medical Imaging","authors":"Guido T. van Moolenbroek, Tania Patiño, J. Llop, S. Sánchez","doi":"10.1002/aisy.202000087","DOIUrl":null,"url":null,"abstract":"Medical imaging serves to obtain anatomical and physiological data, supporting medical diagnostics as well as providing therapeutic evaluation and guidance. A variety of contrast agents have been developed to enhance the recorded signals and to provide molecular imaging. However, fast clearance from the body or nonspecific biodistribution often limit their efficiency, constituting challenges that need to be overcome. Nanoparticle‐based systems are currently emerging as versatile and highly integrated platforms providing improved circulating times, tissue specificity, high loading capacity for signaling moieties, and multimodal imaging features. Furthermore, nanoengineered devices can be tuned for specific applications and the development of responsive behaviors. Responses include in situ modulation of nanoparticle size, increased intratissue mobility through active propulsion of motorized particles, and active modulation of the particle surroundings such as the extracellular matrix for an improved penetration and retention at the desired locations. Once accumulated in the targeted tissue, smart nanoparticle‐based contrast agents can provide molecular sensing of biomarkers or characteristics of the tissue microenvironment. In this case, the signal or contrast provided by the nanosystem is responsive to the presence or concentration of an analyte. Herein, recent developments of intelligent nanosystems to improve medical imaging are presented.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Medical imaging serves to obtain anatomical and physiological data, supporting medical diagnostics as well as providing therapeutic evaluation and guidance. A variety of contrast agents have been developed to enhance the recorded signals and to provide molecular imaging. However, fast clearance from the body or nonspecific biodistribution often limit their efficiency, constituting challenges that need to be overcome. Nanoparticle‐based systems are currently emerging as versatile and highly integrated platforms providing improved circulating times, tissue specificity, high loading capacity for signaling moieties, and multimodal imaging features. Furthermore, nanoengineered devices can be tuned for specific applications and the development of responsive behaviors. Responses include in situ modulation of nanoparticle size, increased intratissue mobility through active propulsion of motorized particles, and active modulation of the particle surroundings such as the extracellular matrix for an improved penetration and retention at the desired locations. Once accumulated in the targeted tissue, smart nanoparticle‐based contrast agents can provide molecular sensing of biomarkers or characteristics of the tissue microenvironment. In this case, the signal or contrast provided by the nanosystem is responsive to the presence or concentration of an analyte. Herein, recent developments of intelligent nanosystems to improve medical imaging are presented.
工程智能纳米系统增强医学成像
医学影像用于获取解剖和生理数据,支持医学诊断以及提供治疗评估和指导。各种造影剂已经开发出来,以增强记录的信号和提供分子成像。然而,体内的快速清除或非特异性生物分布往往限制了它们的效率,构成了需要克服的挑战。基于纳米颗粒的系统目前正在成为多功能和高度集成的平台,可改善循环时间、组织特异性、高信号部分负载能力和多模态成像特征。此外,纳米工程设备可以针对特定的应用和响应行为的发展进行调整。响应包括纳米颗粒尺寸的原位调节,通过主动推进电动颗粒来增加组织内的流动性,以及主动调节颗粒周围环境,如细胞外基质,以改善在所需位置的渗透和保留。一旦在目标组织中积累,基于纳米颗粒的智能造影剂可以提供生物标志物或组织微环境特征的分子传感。在这种情况下,纳米系统提供的信号或对比对分析物的存在或浓度有响应。本文介绍了智能纳米系统在改善医学成像方面的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信