K. Nagamani, V. Reddy, Y. Lingappa, K. Reddy, R. Miles
{"title":"Physical Properties of Zn x Cd 1-x S Nanocrytalline Layers Synthesized by Solution Growth Method","authors":"K. Nagamani, V. Reddy, Y. Lingappa, K. Reddy, R. Miles","doi":"10.5923/J.IJOE.20120202.01","DOIUrl":null,"url":null,"abstract":"In recent years, zinc cadmium sulphide (ZnxCd1-xS) alloy compounds have paid much attention in the fields of opto-electronics, particularly in photovoltaic devices because of its tunable energy gap and the lattice parameters. The energy band gap of ZnxCd1-xS is controlled by the change of Zn-composition in order to suit the material properties with that of absorber material in solar cells. In this paper, we report on the effect of Zn-composition on physical properties of ZnxCd1-xS thin films deposited on corning glass substrates by solution growth method. The layers were prepared for different 'x' values that vary in the range, 0 - 1.0 at. %. The as-grown layers were characterized using EDAX, XRD, SEM, and UV-Vis-NIR spectrophotometers. All the layers showed a strong (002) plane as the preferred orientation that exhibited the hexagonal crystal structure. The composition of the layers agrees approximately with that of the elements in the solution. The films showed an average optical transmittance of 72 % at a zinc composition of 0.75 with a band gap of 3.88 eV.","PeriodicalId":14375,"journal":{"name":"International Journal of Online Engineering","volume":"24 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.IJOE.20120202.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
In recent years, zinc cadmium sulphide (ZnxCd1-xS) alloy compounds have paid much attention in the fields of opto-electronics, particularly in photovoltaic devices because of its tunable energy gap and the lattice parameters. The energy band gap of ZnxCd1-xS is controlled by the change of Zn-composition in order to suit the material properties with that of absorber material in solar cells. In this paper, we report on the effect of Zn-composition on physical properties of ZnxCd1-xS thin films deposited on corning glass substrates by solution growth method. The layers were prepared for different 'x' values that vary in the range, 0 - 1.0 at. %. The as-grown layers were characterized using EDAX, XRD, SEM, and UV-Vis-NIR spectrophotometers. All the layers showed a strong (002) plane as the preferred orientation that exhibited the hexagonal crystal structure. The composition of the layers agrees approximately with that of the elements in the solution. The films showed an average optical transmittance of 72 % at a zinc composition of 0.75 with a band gap of 3.88 eV.
期刊介绍:
We would like to inform you, that iJOE, the ''International Journal of Online Engineering'' will accept now also papers in the field of Biomedical Engineering and e-Health''. iJOE will therefore be published from January 2019 as the ''International Journal of Online and Biomedical Engineering''. The objective of the journal is to publish and discuss fundamentals, applications and experiences in the fields of Online Engineering (remote engineering, virtual instrumentation and online simulations, etc) and Biomedical Engineering/e-Health. The use of cyber-physical systems, virtual and remote controlled devices and remote laboratories are the directions for advanced teleworking/e-working environments. In general, online engineering is a future trend in engineering and science. Due to the growing complexity of engineering tasks, more and more specialized and expensive equipment as well as software tools and simulators, shortage of highly qualified staff, and the demands of globalization and collaboration activities, it become essential to utilize cyber cloud technologies to maximize the use of engineering resources. Online engineering is the way to address these issues. Considering these, one focus of the International Journal of Online and Biomedical Engineering is to provide a platform to publish fundamentals, applications and experiences in the field of Online Engineering, for example: Remote Engineering Internet of Things Cyber-physical Systems Digital Twins Industry 4.0 Virtual Instrumentation. An important application field of online engineering tools and principles are Biomedical Engineering / e-Health. Topics we are interested to publish are: Automation Technology for Medical Applications Big Data in Medicine Biomedical Devices Biosensors Biosignal Processing Clinical Informatics Computational Neuroscience Computer-Aided Surgery.