{"title":"An incremental approach to online dynamic mode decomposition for time-varying systems with applications to EEG data modeling","authors":"M. Alfatlawi, Vaibhav Srivastava","doi":"10.3934/jcd.2020009","DOIUrl":null,"url":null,"abstract":"Dynamic Mode Decomposition (DMD) is a data-driven technique to identify a low dimensional linear time invariant dynamics underlying high-dimensional data. For systems in which such underlying low-dimensional dynamics is time-varying, a time-invariant approximation of such dynamics computed through standard DMD techniques may not be appropriate. We focus on DMD techniques for such time-varying systems and develop incremental algorithms for systems without and with exogenous control inputs. We build upon the work in [35] to scenarios in which high dimensional data are governed by low dimensional time-varying dynamics. We consider two classes of algorithms that rely on (i) a discount factor on previous observations, and (ii) a sliding window of observations. Our algorithms leverage existing techniques for incremental singular value decomposition and allow us to determine an appropriately reduced model at each time and are applicable even if data matrix is singular. We apply the developed algorithms for autonomous systems to Electroencephalographic (EEG) data and demonstrate their effectiveness in terms of reconstruction and prediction. Our algorithms for non-autonomous systems are illustrated using randomly generated linear time-varying systems.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2020009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 14
Abstract
Dynamic Mode Decomposition (DMD) is a data-driven technique to identify a low dimensional linear time invariant dynamics underlying high-dimensional data. For systems in which such underlying low-dimensional dynamics is time-varying, a time-invariant approximation of such dynamics computed through standard DMD techniques may not be appropriate. We focus on DMD techniques for such time-varying systems and develop incremental algorithms for systems without and with exogenous control inputs. We build upon the work in [35] to scenarios in which high dimensional data are governed by low dimensional time-varying dynamics. We consider two classes of algorithms that rely on (i) a discount factor on previous observations, and (ii) a sliding window of observations. Our algorithms leverage existing techniques for incremental singular value decomposition and allow us to determine an appropriately reduced model at each time and are applicable even if data matrix is singular. We apply the developed algorithms for autonomous systems to Electroencephalographic (EEG) data and demonstrate their effectiveness in terms of reconstruction and prediction. Our algorithms for non-autonomous systems are illustrated using randomly generated linear time-varying systems.
期刊介绍:
JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.