An incremental approach to online dynamic mode decomposition for time-varying systems with applications to EEG data modeling

IF 1 Q3 Engineering
M. Alfatlawi, Vaibhav Srivastava
{"title":"An incremental approach to online dynamic mode decomposition for time-varying systems with applications to EEG data modeling","authors":"M. Alfatlawi, Vaibhav Srivastava","doi":"10.3934/jcd.2020009","DOIUrl":null,"url":null,"abstract":"Dynamic Mode Decomposition (DMD) is a data-driven technique to identify a low dimensional linear time invariant dynamics underlying high-dimensional data. For systems in which such underlying low-dimensional dynamics is time-varying, a time-invariant approximation of such dynamics computed through standard DMD techniques may not be appropriate. We focus on DMD techniques for such time-varying systems and develop incremental algorithms for systems without and with exogenous control inputs. We build upon the work in [35] to scenarios in which high dimensional data are governed by low dimensional time-varying dynamics. We consider two classes of algorithms that rely on (i) a discount factor on previous observations, and (ii) a sliding window of observations. Our algorithms leverage existing techniques for incremental singular value decomposition and allow us to determine an appropriately reduced model at each time and are applicable even if data matrix is singular. We apply the developed algorithms for autonomous systems to Electroencephalographic (EEG) data and demonstrate their effectiveness in terms of reconstruction and prediction. Our algorithms for non-autonomous systems are illustrated using randomly generated linear time-varying systems.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2020009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 14

Abstract

Dynamic Mode Decomposition (DMD) is a data-driven technique to identify a low dimensional linear time invariant dynamics underlying high-dimensional data. For systems in which such underlying low-dimensional dynamics is time-varying, a time-invariant approximation of such dynamics computed through standard DMD techniques may not be appropriate. We focus on DMD techniques for such time-varying systems and develop incremental algorithms for systems without and with exogenous control inputs. We build upon the work in [35] to scenarios in which high dimensional data are governed by low dimensional time-varying dynamics. We consider two classes of algorithms that rely on (i) a discount factor on previous observations, and (ii) a sliding window of observations. Our algorithms leverage existing techniques for incremental singular value decomposition and allow us to determine an appropriately reduced model at each time and are applicable even if data matrix is singular. We apply the developed algorithms for autonomous systems to Electroencephalographic (EEG) data and demonstrate their effectiveness in terms of reconstruction and prediction. Our algorithms for non-autonomous systems are illustrated using randomly generated linear time-varying systems.
时变系统在线动态模态分解的增量方法及其在脑电数据建模中的应用
动态模态分解(DMD)是一种数据驱动的技术,用于识别高维数据下的低维线性时不变动态。对于这种潜在的低维动态是时变的系统,通过标准DMD技术计算的这种动态的时不变近似值可能不合适。我们专注于这种时变系统的DMD技术,并为无外生控制输入和有外生控制输入的系统开发增量算法。我们以[35]中的工作为基础,构建高维数据由低维时变动态控制的场景。我们考虑两类算法,它们依赖于(i)先前观测值的折扣因子和(ii)观测值的滑动窗口。我们的算法利用现有的增量奇异值分解技术,允许我们每次确定一个适当的简化模型,并且即使数据矩阵是奇异的也适用。我们将开发的自主系统算法应用于脑电图(EEG)数据,并证明了它们在重建和预测方面的有效性。我们对非自治系统的算法用随机生成的线性时变系统来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Dynamics
Journal of Computational Dynamics Engineering-Computational Mechanics
CiteScore
2.30
自引率
10.00%
发文量
31
期刊介绍: JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信