Abstractions and Automated Algorithms for Mixed Domain Finite Element Methods

Cécile Daversin-Catty, C. Richardson, A. J. Ellingsrud, M. Rognes
{"title":"Abstractions and Automated Algorithms for Mixed Domain Finite Element Methods","authors":"Cécile Daversin-Catty, C. Richardson, A. J. Ellingsrud, M. Rognes","doi":"10.1145/3471138","DOIUrl":null,"url":null,"abstract":"Mixed dimensional partial differential equations (PDEs) are equations coupling unknown fields defined over domains of differing topological dimension. Such equations naturally arise in a wide range of scientific fields including geology, physiology, biology, and fracture mechanics. Mixed dimensional PDEs are also commonly encountered when imposing non-standard conditions over a subspace of lower dimension, e.g., through a Lagrange multiplier. In this article, we present general abstractions and algorithms for finite element discretizations of mixed domain and mixed dimensional PDEs of codimension up to one (i.e., nD-mD with |n-m| ≤ 1). We introduce high-level mathematical software abstractions together with lower-level algorithms for expressing and efficiently solving such coupled systems. The concepts introduced here have also been implemented in the context of the FEniCS finite element software. We illustrate the new features through a range of examples, including a constrained Poisson problem, a set of Stokes-type flow models, and a model for ionic electrodiffusion.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"115 1","pages":"1 - 36"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3471138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Mixed dimensional partial differential equations (PDEs) are equations coupling unknown fields defined over domains of differing topological dimension. Such equations naturally arise in a wide range of scientific fields including geology, physiology, biology, and fracture mechanics. Mixed dimensional PDEs are also commonly encountered when imposing non-standard conditions over a subspace of lower dimension, e.g., through a Lagrange multiplier. In this article, we present general abstractions and algorithms for finite element discretizations of mixed domain and mixed dimensional PDEs of codimension up to one (i.e., nD-mD with |n-m| ≤ 1). We introduce high-level mathematical software abstractions together with lower-level algorithms for expressing and efficiently solving such coupled systems. The concepts introduced here have also been implemented in the context of the FEniCS finite element software. We illustrate the new features through a range of examples, including a constrained Poisson problem, a set of Stokes-type flow models, and a model for ionic electrodiffusion.
混合域有限元方法的抽象与自动算法
混合维偏微分方程(PDEs)是在不同拓扑维数的域上定义的未知场耦合方程。这样的方程自然出现在广泛的科学领域,包括地质学、生理学、生物学和断裂力学。混合维偏微分方程在低维子空间上施加非标准条件时也经常遇到,例如,通过拉格朗日乘子。本文给出了余维数为1的混合域和混合维偏微分方程(即nD-mD, |n-m|≤1)有限元离散化的一般抽象和算法。我们介绍了高级数学软件抽象和低级算法来表达和有效求解这种耦合系统。这里介绍的概念也已经在FEniCS有限元软件的背景下实现。我们通过一系列的例子来说明这些新特征,包括一个约束泊松问题、一组斯托克斯型流动模型和一个离子电扩散模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信