Classifying Challenging Behaviors in Autism Spectrum Disorder with Word Embeddings

Abigail Atchison, Gabriela Pinto, A. Woodward, Elizabeth Stevens, Dennis R. Dixon, Erik J. Linstead
{"title":"Classifying Challenging Behaviors in Autism Spectrum Disorder with Word Embeddings","authors":"Abigail Atchison, Gabriela Pinto, A. Woodward, Elizabeth Stevens, Dennis R. Dixon, Erik J. Linstead","doi":"10.1109/ICMLA52953.2021.00215","DOIUrl":null,"url":null,"abstract":"The understanding and treatment of challenging behaviors in individuals with Autism Spectrum Disorder are paramount to enabling the success of behavioral therapy; an essential step in this process is the labeling of challenging behaviors demonstrated in therapy sessions. This paper seeks to add quantitative depth to this otherwise qualitative task of challenging behavior classification. Here we leverage neural document embeddings with Word2Vec to represent clinical notes capturing 1,917 recorded instance of challenging behaviors from therapy sessions conducted by a large autism treatment provider. These embeddings then serve as training data for supervised machine learning algorithms in both binary and multiclass classification tasks to identify challenging behaviors, achieving high classification accuracies ranging from 82.7% to 98.5%. We demonstrate that the semantic queues derived from the language of challenging behavior descriptions, modeled using natural language processing techniques, can be successfully leveraged to extract and identify challenging behaviors from real-world clinical data.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"32 1","pages":"1325-1332"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The understanding and treatment of challenging behaviors in individuals with Autism Spectrum Disorder are paramount to enabling the success of behavioral therapy; an essential step in this process is the labeling of challenging behaviors demonstrated in therapy sessions. This paper seeks to add quantitative depth to this otherwise qualitative task of challenging behavior classification. Here we leverage neural document embeddings with Word2Vec to represent clinical notes capturing 1,917 recorded instance of challenging behaviors from therapy sessions conducted by a large autism treatment provider. These embeddings then serve as training data for supervised machine learning algorithms in both binary and multiclass classification tasks to identify challenging behaviors, achieving high classification accuracies ranging from 82.7% to 98.5%. We demonstrate that the semantic queues derived from the language of challenging behavior descriptions, modeled using natural language processing techniques, can be successfully leveraged to extract and identify challenging behaviors from real-world clinical data.
基于词嵌入的自闭症谱系障碍挑战行为分类
理解和治疗自闭症谱系障碍患者的挑战性行为对行为治疗的成功至关重要;这个过程的一个重要步骤是给治疗过程中表现出来的具有挑战性的行为贴上标签。本文试图为具有挑战性的行为分类这一定性任务增加定量深度。在这里,我们利用Word2Vec的神经文档嵌入来表示临床记录,从一家大型自闭症治疗提供商进行的治疗过程中捕获了1,917个记录的具有挑战性的行为实例。然后,这些嵌入作为监督机器学习算法在二元和多类分类任务中的训练数据,以识别具有挑战性的行为,实现了82.7%至98.5%的高分类准确率。我们证明了从具有挑战性的行为描述语言派生的语义队列,使用自然语言处理技术建模,可以成功地用于从现实世界的临床数据中提取和识别具有挑战性的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信