Genesis of Noise-Induced Multimodal Chaotic Oscillations in Enzyme Kinetics: Stochastic Bifurcations and Sensitivity Analysis

I. Bashkirtseva
{"title":"Genesis of Noise-Induced Multimodal Chaotic Oscillations in Enzyme Kinetics: Stochastic Bifurcations and Sensitivity Analysis","authors":"I. Bashkirtseva","doi":"10.1142/s0218127423300136","DOIUrl":null,"url":null,"abstract":"In this paper, by the example of 3D model of enzyme reaction, we study mechanisms of noise-induced generation of complex multimodal chaotic oscillations in the monostability zone where only simple deterministic cycles are observed. In such a generation, a constructive role of deterministic toroidal transients is revealed. We perform a statistical analysis of these phenomena and localize the intensity range of the noise that causes stochastic [Formula: see text]- and [Formula: see text]-bifurcations connected with transitions to chaos and qualitative changes in the probability density. Constructive possibilities of the stochastic sensitivity function technique in the analytical study of these phenomena are demonstrated.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423300136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, by the example of 3D model of enzyme reaction, we study mechanisms of noise-induced generation of complex multimodal chaotic oscillations in the monostability zone where only simple deterministic cycles are observed. In such a generation, a constructive role of deterministic toroidal transients is revealed. We perform a statistical analysis of these phenomena and localize the intensity range of the noise that causes stochastic [Formula: see text]- and [Formula: see text]-bifurcations connected with transitions to chaos and qualitative changes in the probability density. Constructive possibilities of the stochastic sensitivity function technique in the analytical study of these phenomena are demonstrated.
酶动力学中噪声诱导的多模态混沌振荡的成因:随机分岔和灵敏度分析
本文以酶反应的三维模型为例,研究了在单稳定区仅观察到简单确定性周期的复杂多模态混沌振荡的噪声诱导产生机理。在这一代中,确定性环面瞬态的建设性作用被揭示出来。我们对这些现象进行了统计分析,并定位了引起随机[公式:见文]和[公式:见文]分岔的噪声的强度范围,这些分岔与向混沌的过渡和概率密度的质变有关。证明了随机灵敏度函数技术在这些现象分析研究中的构造可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信