{"title":"Genesis of Noise-Induced Multimodal Chaotic Oscillations in Enzyme Kinetics: Stochastic Bifurcations and Sensitivity Analysis","authors":"I. Bashkirtseva","doi":"10.1142/s0218127423300136","DOIUrl":null,"url":null,"abstract":"In this paper, by the example of 3D model of enzyme reaction, we study mechanisms of noise-induced generation of complex multimodal chaotic oscillations in the monostability zone where only simple deterministic cycles are observed. In such a generation, a constructive role of deterministic toroidal transients is revealed. We perform a statistical analysis of these phenomena and localize the intensity range of the noise that causes stochastic [Formula: see text]- and [Formula: see text]-bifurcations connected with transitions to chaos and qualitative changes in the probability density. Constructive possibilities of the stochastic sensitivity function technique in the analytical study of these phenomena are demonstrated.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423300136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, by the example of 3D model of enzyme reaction, we study mechanisms of noise-induced generation of complex multimodal chaotic oscillations in the monostability zone where only simple deterministic cycles are observed. In such a generation, a constructive role of deterministic toroidal transients is revealed. We perform a statistical analysis of these phenomena and localize the intensity range of the noise that causes stochastic [Formula: see text]- and [Formula: see text]-bifurcations connected with transitions to chaos and qualitative changes in the probability density. Constructive possibilities of the stochastic sensitivity function technique in the analytical study of these phenomena are demonstrated.