Technical Note—Data-Driven Profit Estimation Error in the Newsvendor Model

IF 0.7 4区 管理学 Q3 Engineering
A. Siegel, Michael R. Wagner
{"title":"Technical Note—Data-Driven Profit Estimation Error in the Newsvendor Model","authors":"A. Siegel, Michael R. Wagner","doi":"10.1287/opre.2023.0070","DOIUrl":null,"url":null,"abstract":"An unbiased forecast of profit is important in most business environments. Typically, forecasts are generated from data. However, in “Technical Note—Data-Driven Profit Estimation Error in the newsvendor model,” Siegel and Wagner identify a strictly positive bias in a natural estimation of expected profit in a data-driven newsvendor model, where managers will expect more profit than will actually be realized, on average. This bias can reach significant proportions (in some cases 50%+) of the true expected profit and could therefore have undesired and damaging effects in the real world. Siegel and Wagner then design a data-driven adjustment that results in an unbiased estimator of expected profit, so that managers may have an accurate forecast of future profit that is free of systematic bias.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"46 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2023.0070","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

An unbiased forecast of profit is important in most business environments. Typically, forecasts are generated from data. However, in “Technical Note—Data-Driven Profit Estimation Error in the newsvendor model,” Siegel and Wagner identify a strictly positive bias in a natural estimation of expected profit in a data-driven newsvendor model, where managers will expect more profit than will actually be realized, on average. This bias can reach significant proportions (in some cases 50%+) of the true expected profit and could therefore have undesired and damaging effects in the real world. Siegel and Wagner then design a data-driven adjustment that results in an unbiased estimator of expected profit, so that managers may have an accurate forecast of future profit that is free of systematic bias.
技术笔记-数据驱动的报贩模型利润估计误差
在大多数商业环境中,公正的利润预测是很重要的。通常,预测是由数据生成的。然而,在“技术笔记-数据驱动的报贩模型中的利润估计误差”中,西格尔和瓦格纳确定了在数据驱动的报贩模型中对预期利润的自然估计中存在严格的正偏差,在这种模型中,经理期望的利润比实际实现的平均利润要高。这种偏差可以达到真实预期利润的很大比例(在某些情况下超过50%),因此可能在现实世界中产生不希望的破坏性影响。然后,西格尔和瓦格纳设计了一个数据驱动的调整,结果是预期利润的无偏估计值,这样管理者就可以对未来利润进行准确的预测,而不受系统偏差的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Military Operations Research
Military Operations Research 管理科学-运筹学与管理科学
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信