{"title":"Quick Reduction of Specific Absorption Rate Constraints in Parallel RF Excitation Pulse Design by Maximum Volume Inscribed Ellipsoids","authors":"K. Majewski","doi":"10.1155/2019/7369845","DOIUrl":null,"url":null,"abstract":"In medical magnetic resonance imaging, parallel radio frequency excitation pulses have to respect a large number of specific absorption rate constraints. Geometrically, each of these constraints can be interpreted as a complex, centered ellipsoid. We propose to replace a collection of such constraints by the single constraint which corresponds to the associated maximum volume inscribed ellipsoid and implies all original constraints. We describe how to compute this ellipsoid via convex programming. Examples show that this reduction has very short computation times but cuts away parts of the feasible power domain.","PeriodicalId":55216,"journal":{"name":"Concepts in Magnetic Resonance Part A","volume":"77 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part A","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2019/7369845","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In medical magnetic resonance imaging, parallel radio frequency excitation pulses have to respect a large number of specific absorption rate constraints. Geometrically, each of these constraints can be interpreted as a complex, centered ellipsoid. We propose to replace a collection of such constraints by the single constraint which corresponds to the associated maximum volume inscribed ellipsoid and implies all original constraints. We describe how to compute this ellipsoid via convex programming. Examples show that this reduction has very short computation times but cuts away parts of the feasible power domain.
期刊介绍:
Concepts in Magnetic Resonance Part A brings together clinicians, chemists, and physicists involved in the application of magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from academic, governmental, and clinical communities, to disseminate the latest important experimental results from medical, non-medical, and analytical magnetic resonance methods, as well as related computational and theoretical advances.
Subject areas include (but are by no means limited to):
-Fundamental advances in the understanding of magnetic resonance
-Experimental results from magnetic resonance imaging (including MRI and its specialized applications)
-Experimental results from magnetic resonance spectroscopy (including NMR, EPR, and their specialized applications)
-Computational and theoretical support and prediction for experimental results
-Focused reviews providing commentary and discussion on recent results and developments in topical areas of investigation
-Reviews of magnetic resonance approaches with a tutorial or educational approach