Nassim Bahri, Mohamed Anis Bach Tobji, B. B. Yaghlane
{"title":"WPEviRC: A Multi-rules-based Classifier for Evidential Databases Without Class Label Ambiguities","authors":"Nassim Bahri, Mohamed Anis Bach Tobji, B. B. Yaghlane","doi":"10.1142/s0218213022600028","DOIUrl":null,"url":null,"abstract":"Rule-based classifiers use a collection of high-quality rules to classify new data instances. They can be categorized according to the adopted classification strategy: Classifiers based on a single rule, and classifiers based on multiple rules. Many works were proposed in this field. However, most of them do not handle imperfect data. In this study, we focus on the issue of multi-rules-based classification for evidential data, i.e., data where imperfection is modeled via the belief functions theory. In this respect, we introduce a new algorithm called PWEviRC. This latter involves a two-level pruning technique to remove redundant and noisy rules. Finally, it applies the Dempster rule of combination to fuse the selected rules and make the final decision. To evaluate the proposed method, we carried out extensive experiments on several benchmark data sets. The performance study showed interesting results in comparison to existing methods.","PeriodicalId":50280,"journal":{"name":"International Journal on Artificial Intelligence Tools","volume":"50 1","pages":"2260002:1-2260002:24"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Artificial Intelligence Tools","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0218213022600028","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Rule-based classifiers use a collection of high-quality rules to classify new data instances. They can be categorized according to the adopted classification strategy: Classifiers based on a single rule, and classifiers based on multiple rules. Many works were proposed in this field. However, most of them do not handle imperfect data. In this study, we focus on the issue of multi-rules-based classification for evidential data, i.e., data where imperfection is modeled via the belief functions theory. In this respect, we introduce a new algorithm called PWEviRC. This latter involves a two-level pruning technique to remove redundant and noisy rules. Finally, it applies the Dempster rule of combination to fuse the selected rules and make the final decision. To evaluate the proposed method, we carried out extensive experiments on several benchmark data sets. The performance study showed interesting results in comparison to existing methods.
期刊介绍:
The International Journal on Artificial Intelligence Tools (IJAIT) provides an interdisciplinary forum in which AI scientists and professionals can share their research results and report new advances on AI tools or tools that use AI. Tools refer to architectures, languages or algorithms, which constitute the means connecting theory with applications. So, IJAIT is a medium for promoting general and/or special purpose tools, which are very important for the evolution of science and manipulation of knowledge. IJAIT can also be used as a test ground for new AI tools.
Topics covered by IJAIT include but are not limited to: AI in Bioinformatics, AI for Service Engineering, AI for Software Engineering, AI for Ubiquitous Computing, AI for Web Intelligence Applications, AI Parallel Processing Tools (hardware/software), AI Programming Languages, AI Tools for CAD and VLSI Analysis/Design/Testing, AI Tools for Computer Vision and Speech Understanding, AI Tools for Multimedia, Cognitive Informatics, Data Mining and Machine Learning Tools, Heuristic and AI Planning Strategies and Tools, Image Understanding, Integrated/Hybrid AI Approaches, Intelligent System Architectures, Knowledge-Based/Expert Systems, Knowledge Management and Processing Tools, Knowledge Representation Languages, Natural Language Understanding, Neural Networks for AI, Object-Oriented Programming for AI, Reasoning and Evolution of Knowledge Bases, Self-Healing and Autonomous Systems, and Software Engineering for AI.