Nearly Tight Bounds for Discrete Search under Outlier Noise

Anindya De, S. Khanna, Huan Li, Hesam Nikpey
{"title":"Nearly Tight Bounds for Discrete Search under Outlier Noise","authors":"Anindya De, S. Khanna, Huan Li, Hesam Nikpey","doi":"10.1137/1.9781611977066.11","DOIUrl":null,"url":null,"abstract":"Binary search is one of the most fundamental search routines, exploiting the hidden structure of the search space. In particular, it cuts down exponentially on the complexity of the search assuming that the search space is monotone. This paper is prompted by a basic question – how does the query complexity of the search problem change if the data has corruption? In particular, we study the powerful outlier noise model and assuming a bound on the fraction of such corruptions, establish nearly matching upper and lower bounds for the following problems: (i) binary search on an ordered set of size [ n ] ; (ii) search on the posets { 0 , 1 } d ; and (iii) search on the posets [ n ] d . In all three cases, we use randomization to create robust versions of classical algorithms for these problems that handle corrupted data with relatively small performance penalties, specified as a function of the amount of corruption K . We complement these algorithmic results with almost matching lower bounds that show that no randomized algorithm can solve these problems with a smaller performance hit on the query complexity as a function of K .","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"46 1","pages":"161-173"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977066.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Binary search is one of the most fundamental search routines, exploiting the hidden structure of the search space. In particular, it cuts down exponentially on the complexity of the search assuming that the search space is monotone. This paper is prompted by a basic question – how does the query complexity of the search problem change if the data has corruption? In particular, we study the powerful outlier noise model and assuming a bound on the fraction of such corruptions, establish nearly matching upper and lower bounds for the following problems: (i) binary search on an ordered set of size [ n ] ; (ii) search on the posets { 0 , 1 } d ; and (iii) search on the posets [ n ] d . In all three cases, we use randomization to create robust versions of classical algorithms for these problems that handle corrupted data with relatively small performance penalties, specified as a function of the amount of corruption K . We complement these algorithmic results with almost matching lower bounds that show that no randomized algorithm can solve these problems with a smaller performance hit on the query complexity as a function of K .
离群噪声下离散搜索的近紧界
二分搜索是最基本的搜索例程之一,它利用了搜索空间的隐藏结构。特别是,它在假设搜索空间是单调的情况下,指数地降低了搜索的复杂度。这篇论文是由一个基本的问题引起的——如果数据有损坏,搜索问题的查询复杂性是如何变化的?特别地,我们研究了强大的离群噪声模型,并假设了这种破坏的分数的一个界限,为以下问题建立了接近匹配的上界和下界:(i)在大小为[n]的有序集合上的二分搜索;(ii)对偏置集{0,1}d的搜索;(iii)对偏序集[n] d的搜索。在这三种情况下,我们使用随机化来为这些问题创建经典算法的鲁棒版本,这些算法以相对较小的性能损失(指定为损坏量K的函数)处理损坏的数据。我们用几乎匹配的下界来补充这些算法结果,这表明没有随机算法可以以较小的性能对查询复杂性的影响作为K的函数来解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信