Performance tradeoffs for spare parts supply chains with additive manufacturing capability servicing intermittent demand

Q3 Decision Sciences
K. C. McDermott, Ryan D. Winz, T. Hodgson, M. Kay, R. King, B. M. McConnell
{"title":"Performance tradeoffs for spare parts supply chains with additive manufacturing capability servicing intermittent demand","authors":"K. C. McDermott, Ryan D. Winz, T. Hodgson, M. Kay, R. King, B. M. McConnell","doi":"10.1108/jdal-08-2020-0016","DOIUrl":null,"url":null,"abstract":"PurposeThe study aims to investigate the impact of additive manufacturing (AM) on the performance of a spare parts supply chain with a particular focus on underlying spare part demand patterns.Design/methodology/approachThis work evaluates various AM-enabled supply chain configurations through Monte Carlo simulation. Historical demand simulation and intermittent demand forecasting are used in conjunction with a mixed integer linear program to determine optimal network nodal inventory policies. By varying demand characteristics and AM capacity this work assesses how to best employ AM capability within the network.FindingsThis research assesses the preferred AM-enabled supply chain configuration for varying levels of intermittent demand patterns and AM production capacity. The research shows that variation in demand patterns alone directly affects the preferred network configuration. The relationship between the demand volume and relative AM production capacity affects the regions of superior network configuration performance.Research limitations/implicationsThis research makes several simplifying assumptions regarding AM technical capabilities. AM production time is assumed to be deterministic and does not consider build failure probability, build chamber capacity, part size, part complexity and post-processing requirements.Originality/valueThis research is the first study to link realistic spare part demand characterization to AM supply chain design using quantitative modeling.","PeriodicalId":32838,"journal":{"name":"Journal of Defense Analytics and Logistics","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Analytics and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jdal-08-2020-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 5

Abstract

PurposeThe study aims to investigate the impact of additive manufacturing (AM) on the performance of a spare parts supply chain with a particular focus on underlying spare part demand patterns.Design/methodology/approachThis work evaluates various AM-enabled supply chain configurations through Monte Carlo simulation. Historical demand simulation and intermittent demand forecasting are used in conjunction with a mixed integer linear program to determine optimal network nodal inventory policies. By varying demand characteristics and AM capacity this work assesses how to best employ AM capability within the network.FindingsThis research assesses the preferred AM-enabled supply chain configuration for varying levels of intermittent demand patterns and AM production capacity. The research shows that variation in demand patterns alone directly affects the preferred network configuration. The relationship between the demand volume and relative AM production capacity affects the regions of superior network configuration performance.Research limitations/implicationsThis research makes several simplifying assumptions regarding AM technical capabilities. AM production time is assumed to be deterministic and does not consider build failure probability, build chamber capacity, part size, part complexity and post-processing requirements.Originality/valueThis research is the first study to link realistic spare part demand characterization to AM supply chain design using quantitative modeling.
利用增材制造能力服务间歇性需求的备件供应链的性能权衡
本研究旨在调查增材制造(AM)对备件供应链绩效的影响,并特别关注潜在的备件需求模式。设计/方法/方法本工作通过蒙特卡罗模拟评估各种am支持的供应链配置。将历史需求模拟和间歇需求预测与混合整数线性规划相结合,确定最优网络节点库存策略。通过改变需求特征和AM能力,本工作评估了如何在网络中最好地使用AM能力。本研究针对不同水平的间歇性需求模式和增材制造生产能力,评估了首选的增材制造支持的供应链配置。研究表明,需求模式的变化直接影响到首选的网络配置。需求量与AM相对生产能力之间的关系影响网络配置性能优越的区域。本研究对增材制造技术能力做了几个简化的假设。假定增材制造的生产时间是确定的,不考虑制造失效概率、制造腔容量、零件尺寸、零件复杂性和后处理要求。原创性/价值本研究首次使用定量建模将现实备件需求特征与增材制造供应链设计联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
5
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信