Finite, Fiber- and Orientation-Preserving Group Actions on Totally Orientable Seifert Manifolds

IF 0.4 Q4 MATHEMATICS
Benjamin Peet
{"title":"Finite, Fiber- and Orientation-Preserving Group Actions on Totally Orientable Seifert Manifolds","authors":"Benjamin Peet","doi":"10.2478/amsil-2019-0007","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we consider the finite groups that act fiber- and orientation-preservingly on closed, compact, and orientable Seifert manifolds that fiber over an orientable base space. We establish a method of constructing such group actions and then show that if an action satisfies a condition on the obstruction class of the Seifert manifold, it can be derived from the given construction. The obstruction condition is refined and the general structure of the finite groups that act via the construction is provided.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"40 1","pages":"235 - 265"},"PeriodicalIF":0.4000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2019-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this paper we consider the finite groups that act fiber- and orientation-preservingly on closed, compact, and orientable Seifert manifolds that fiber over an orientable base space. We establish a method of constructing such group actions and then show that if an action satisfies a condition on the obstruction class of the Seifert manifold, it can be derived from the given construction. The obstruction condition is refined and the general structure of the finite groups that act via the construction is provided.
完全可定向塞弗特流形上有限、纤维和取向保持的群作用
摘要本文研究了在可定向基空间上的闭紧可定向Seifert流形上保持纤维和取向的有限群。我们建立了构造这类群作用的方法,并证明了如果一个作用满足Seifert流形的阻塞类上的一个条件,它可以由给定的构造导出。对阻塞条件进行了细化,并给出了作用于该结构的有限群的一般结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信