An evaluation of the construction of the device along with the software for digital archiving, sending the data, and supporting the diagnosis of cervical cancer

Ł. Lasyk, J. Barbasz, P. Żuk, A. Prusaczyk, T. Włodarczyk, E. Prokurat, W. Olszewski, M. Bidziński, P. Baszuk, J. Gronwald
{"title":"An evaluation of the construction of the device along with the software for digital archiving, sending the data, and supporting the diagnosis of cervical cancer","authors":"Ł. Lasyk, J. Barbasz, P. Żuk, A. Prusaczyk, T. Włodarczyk, E. Prokurat, W. Olszewski, M. Bidziński, P. Baszuk, J. Gronwald","doi":"10.5114/wo.2019.85617","DOIUrl":null,"url":null,"abstract":"Cervical cancer is still an important cause of mortality among women in a number of countries. There are effective methods of prevention and early diagnosis, but they require well-trained medical professionals including cytologists. Within this project, we built a prototype of a new device together with implemented software using U-NET and CNN architectures of neural networks (ANN), to convert the currently used optical microscopes into fully independent scanning and evaluating systems for cytological samples. To evaluate the specificity and sensitivity of the system, 2058 (2000 normal and 58 abnormal samples) consecutive liquid-based cytology (LBC) samples were analysed. The observed sensitivity and specificity to distinguish normal and abnormal samples was 100%. We observed slight incompatibility in the evaluation of the type of abnormality. The use of ANN is promising for increasing the effectiveness of cervical screening. The low cost of neural network usage further increases the potential areas of application of the presented method. Further refinement of neural networks on a larger sample size is required to evaluate the software.","PeriodicalId":10652,"journal":{"name":"Contemporary Oncology","volume":"32 1","pages":"174 - 177"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/wo.2019.85617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cervical cancer is still an important cause of mortality among women in a number of countries. There are effective methods of prevention and early diagnosis, but they require well-trained medical professionals including cytologists. Within this project, we built a prototype of a new device together with implemented software using U-NET and CNN architectures of neural networks (ANN), to convert the currently used optical microscopes into fully independent scanning and evaluating systems for cytological samples. To evaluate the specificity and sensitivity of the system, 2058 (2000 normal and 58 abnormal samples) consecutive liquid-based cytology (LBC) samples were analysed. The observed sensitivity and specificity to distinguish normal and abnormal samples was 100%. We observed slight incompatibility in the evaluation of the type of abnormality. The use of ANN is promising for increasing the effectiveness of cervical screening. The low cost of neural network usage further increases the potential areas of application of the presented method. Further refinement of neural networks on a larger sample size is required to evaluate the software.
对该设备的结构以及用于数字存档、发送数据和支持宫颈癌诊断的软件进行评估
在一些国家,子宫颈癌仍然是妇女死亡的一个重要原因。有有效的预防和早期诊断方法,但它们需要训练有素的医疗专业人员,包括细胞学家。在这个项目中,我们构建了一个新设备的原型,并使用U-NET和神经网络(ANN)的CNN架构实现了软件,将目前使用的光学显微镜转换为完全独立的细胞学样本扫描和评估系统。为了评估该系统的特异性和敏感性,对2058例(2000例正常和58例异常)连续液基细胞学(LBC)样本进行分析。所观察到的区分正常和异常样品的敏感性和特异性均为100%。我们观察到轻微的不相容在评估类型的异常。人工神经网络的使用有望提高子宫颈筛查的有效性。神经网络使用的低成本进一步增加了该方法的潜在应用领域。需要在更大的样本量上进一步改进神经网络来评估软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信