Prototype Sistem Penyortir Buah Kopi Arabika Berdasarkan Tingkat Kematangan Menggunakan Metode Support Vector Machine

Teknika Pub Date : 2023-03-13 DOI:10.34148/teknika.v12i1.602
Juprianus Rusman, Nofrianto Pasae
{"title":"Prototype Sistem Penyortir Buah Kopi Arabika Berdasarkan Tingkat Kematangan Menggunakan Metode Support Vector Machine","authors":"Juprianus Rusman, Nofrianto Pasae","doi":"10.34148/teknika.v12i1.602","DOIUrl":null,"url":null,"abstract":"Salah satu proses peningkatan mutu kopi adalah menyeleksi buah kopi yang matang dan belum matang pasca panen yang dilakukan dengan cara memilih satu per satu. Namun dengan cara tersebut terdapat kelemahan yaitu inkonsistennya hasil sortiran karena faktor subjektifitas dan intentitas cahaya. Sebagai solusi, pada penelitian ini didesain alat bantu dalam bentuk prototipe untuk menyortir buah kopi berdasarkan kematangannya. Kopi matang ditandai dengan warna merah, kopi setengah matang dengan warna kuning kemerahan dan kopi mentah dengan warna hijau. Kamera diletakkan dalam kotak guna mengurangi intentitas cahaya eksternal, digunakan untuk mengambil citra buah kopi kemudian citra buah kopi akan dipisahkan dengan background dengan metode segmentasi warna hue, saturation, value (HSV). Selanjutnya citra buah kopi diekstraksi untuk mendapatkan nilai setiap warna dengan parameter red, green, blue (RGB) dan HSV guna membentuk model klasifikasi metode support vector machine (SVM). Parameter SVM optimum yaitu cost (C)= 10,0 dan gamma (γ)= 0,001. Prototipe yang dibangun berbentuk persegi panjang dengan panjang 70 cm, lebar 10 cm dan tinggi 12 cm. Komponen penyortir yaitu servo yang memutar ke sudut 90o untuk klasifikasi “matang”, sudut 45o untuk klasifikasi “matang setengah” dan sudut 135o untuk klasifikasi “mentah” sedangkan conveyor belt digerakkan oleh motor DC 12 V. Meskipun pada proses prediksi perangkat lunak terdapat kesalahan prediksi namun perangkat keras telah bekerja dengan baik ditandai dengan servo berhasil memutar link ke sudut yang telah ditentukan sesuai hasil prediksi. Dengan demikian, dapat disimpulkan bahwa prototipe sistem penyortir buah kopi arabika berdasarkan kematangannya berhasil dibangun.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34148/teknika.v12i1.602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Salah satu proses peningkatan mutu kopi adalah menyeleksi buah kopi yang matang dan belum matang pasca panen yang dilakukan dengan cara memilih satu per satu. Namun dengan cara tersebut terdapat kelemahan yaitu inkonsistennya hasil sortiran karena faktor subjektifitas dan intentitas cahaya. Sebagai solusi, pada penelitian ini didesain alat bantu dalam bentuk prototipe untuk menyortir buah kopi berdasarkan kematangannya. Kopi matang ditandai dengan warna merah, kopi setengah matang dengan warna kuning kemerahan dan kopi mentah dengan warna hijau. Kamera diletakkan dalam kotak guna mengurangi intentitas cahaya eksternal, digunakan untuk mengambil citra buah kopi kemudian citra buah kopi akan dipisahkan dengan background dengan metode segmentasi warna hue, saturation, value (HSV). Selanjutnya citra buah kopi diekstraksi untuk mendapatkan nilai setiap warna dengan parameter red, green, blue (RGB) dan HSV guna membentuk model klasifikasi metode support vector machine (SVM). Parameter SVM optimum yaitu cost (C)= 10,0 dan gamma (γ)= 0,001. Prototipe yang dibangun berbentuk persegi panjang dengan panjang 70 cm, lebar 10 cm dan tinggi 12 cm. Komponen penyortir yaitu servo yang memutar ke sudut 90o untuk klasifikasi “matang”, sudut 45o untuk klasifikasi “matang setengah” dan sudut 135o untuk klasifikasi “mentah” sedangkan conveyor belt digerakkan oleh motor DC 12 V. Meskipun pada proses prediksi perangkat lunak terdapat kesalahan prediksi namun perangkat keras telah bekerja dengan baik ditandai dengan servo berhasil memutar link ke sudut yang telah ditentukan sesuai hasil prediksi. Dengan demikian, dapat disimpulkan bahwa prototipe sistem penyortir buah kopi arabika berdasarkan kematangannya berhasil dibangun.
改进咖啡的一个过程是选择一种成熟的和未成熟的咖啡果实,在收获后,通过一个接一个的选择。但在某种程度上,光的主观和强度因素导致的不一致的悲伤是有缺陷的。作为解决方案,这项研究设计了一种原型形式的助听器,用于根据咖啡产量对咖啡果进行分类。煮咖啡的颜色是红色,淡黄色的咖啡,绿色的生咖啡。相机被放置在盒子里,以减少外部照明的强度,用来提取咖啡水果的图像,然后将咖啡水果的图像与背景图像分离,以色色分割,凝聚,价值(HSV)。然后提取咖啡果图像,以获得红色、绿色、蓝色(RGB)和HSV参数的颜色值,形成支持矢量机(SVM)分类模型。最佳SVM参数成本(C) = 0和伽马(γ)= 0.001。原型是一个矩形的矩形,长70厘米,宽10厘米,高12厘米。解析组件是servo,它旋转到90o的“成熟”分类的角度是45o,“半成熟”分类的角度是45o,而输送带由DC 12 V发动机驱动。虽然在软件预测过程中有预测错误,但硬件运行良好,其标记是伺服系统成功地将链接旋转到预测结果确定的角度。因此,可以得出结论,阿拉比卡咖啡咖啡的原型系统是建立在效率的基础上的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
22
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信