Finite temperature off-diagonal long-range order for interacting bosons

A. Colcelli, N. Defenu, G. Mussardo, A. Trombettoni
{"title":"Finite temperature off-diagonal long-range order for interacting bosons","authors":"A. Colcelli, N. Defenu, G. Mussardo, A. Trombettoni","doi":"10.1103/physrevb.102.184510","DOIUrl":null,"url":null,"abstract":"Characterizing the scaling with the total particle number ($N$) of the largest eigenvalue of the one--body density matrix ($\\lambda_0$), provides informations on the occurrence of the off-diagonal long-range order (ODLRO) according to the Penrose-Onsager criterion. Setting $\\lambda_0\\sim N^{\\mathcal{C}_0}$, then $\\mathcal{C}_0=1$ corresponds to ODLRO. The intermediate case, $0<\\mathcal{C}_0<1$, corresponds for translational invariant systems to the power-law decaying of (non-connected) correlation functions and it can be seen as identifying quasi-long-range order. The goal of the present paper is to characterize the ODLRO properties encoded in $\\mathcal{C}_0$ [and in the corresponding quantities $\\mathcal{C}_{k \\neq 0}$ for excited natural orbitals] exhibited by homogeneous interacting bosonic systems at finite temperature for different dimensions. We show that $\\mathcal{C}_{k \\neq 0}=0$ in the thermodynamic limit. In $1D$ it is $\\mathcal{C}_0=0$ for non-vanishing temperature, while in $3D$ $\\mathcal{C}_0=1$ ($\\mathcal{C}_0=0$) for temperatures smaller (larger) than the Bose-Einstein critical temperature. We then focus our attention to $D=2$, studying the $XY$ and the Villain models, and the weakly interacting Bose gas. The universal value of $\\mathcal{C}_0$ near the Berezinskii--Kosterlitz--Thouless temperature $T_{BKT}$ is $7/8$. The dependence of $\\mathcal{C}_0$ on temperatures between $T=0$ (at which $\\mathcal{C}_0=1$) and $T_{BKT}$ is studied in the different models. An estimate for the (non-perturbative) parameter $\\xi$ entering the equation of state of the $2D$ Bose gases, is obtained using low temperature expansions and compared with the Monte Carlo result. We finally discuss a double jump behaviour for $\\mathcal{C}_0$, and correspondingly of the anomalous dimension $\\eta$, right below $T_{BKT}$ in the limit of vanishing interactions.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.184510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Characterizing the scaling with the total particle number ($N$) of the largest eigenvalue of the one--body density matrix ($\lambda_0$), provides informations on the occurrence of the off-diagonal long-range order (ODLRO) according to the Penrose-Onsager criterion. Setting $\lambda_0\sim N^{\mathcal{C}_0}$, then $\mathcal{C}_0=1$ corresponds to ODLRO. The intermediate case, $0<\mathcal{C}_0<1$, corresponds for translational invariant systems to the power-law decaying of (non-connected) correlation functions and it can be seen as identifying quasi-long-range order. The goal of the present paper is to characterize the ODLRO properties encoded in $\mathcal{C}_0$ [and in the corresponding quantities $\mathcal{C}_{k \neq 0}$ for excited natural orbitals] exhibited by homogeneous interacting bosonic systems at finite temperature for different dimensions. We show that $\mathcal{C}_{k \neq 0}=0$ in the thermodynamic limit. In $1D$ it is $\mathcal{C}_0=0$ for non-vanishing temperature, while in $3D$ $\mathcal{C}_0=1$ ($\mathcal{C}_0=0$) for temperatures smaller (larger) than the Bose-Einstein critical temperature. We then focus our attention to $D=2$, studying the $XY$ and the Villain models, and the weakly interacting Bose gas. The universal value of $\mathcal{C}_0$ near the Berezinskii--Kosterlitz--Thouless temperature $T_{BKT}$ is $7/8$. The dependence of $\mathcal{C}_0$ on temperatures between $T=0$ (at which $\mathcal{C}_0=1$) and $T_{BKT}$ is studied in the different models. An estimate for the (non-perturbative) parameter $\xi$ entering the equation of state of the $2D$ Bose gases, is obtained using low temperature expansions and compared with the Monte Carlo result. We finally discuss a double jump behaviour for $\mathcal{C}_0$, and correspondingly of the anomalous dimension $\eta$, right below $T_{BKT}$ in the limit of vanishing interactions.
相互作用玻色子的有限温度非对角长程序
用一体密度矩阵($\lambda_0$)的最大特征值的总粒子数($N$)表征尺度,根据Penrose-Onsager准则提供了关于非对角线远程顺序(ODLRO)发生的信息。输入$\lambda_0\sim N^{\mathcal{C}_0}$,则$\mathcal{C}_0=1$对应ODLRO。中间情况,$0<\mathcal{C}_0<1$,对应于平动不变系统的幂律衰减(非连接)相关函数,它可以看作是识别准远程顺序。本文的目的是表征在有限温度下不同维度的均匀相互作用玻色子系统所表现出的编码为$\mathcal{C}_0$的ODLRO性质[以及激发自然轨道的相应数量$\mathcal{C}_{k \neq 0}$]。我们在热力学极限中表示$\mathcal{C}_{k \neq 0}=0$。在$1D$中,非消失温度为$\mathcal{C}_0=0$,而在$3D$$\mathcal{C}_0=1$ ($\mathcal{C}_0=0$)中,小于(大于)玻色-爱因斯坦临界温度的温度为。然后我们将注意力集中在$D=2$上,研究$XY$和Villain模型,以及弱相互作用的玻色气体。在别列津斯基-科斯特利茨-索利斯温度$T_{BKT}$附近,$\mathcal{C}_0$的普遍值是$7/8$。在不同的模型中研究了$\mathcal{C}_0$对$T=0$ ($\mathcal{C}_0=1$)和$T_{BKT}$之间温度的依赖性。利用低温膨胀得到了进入$2D$玻色气体状态方程的(非摄动)参数$\xi$的估计,并与蒙特卡罗结果进行了比较。我们最后讨论了$\mathcal{C}_0$的双重跳跃行为,以及相应的在相互作用消失的极限中,在$T_{BKT}$下面的异常维度$\eta$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信