Orthogonal sets of vectors over Zm

Alan Zame
{"title":"Orthogonal sets of vectors over Zm","authors":"Alan Zame","doi":"10.1016/S0021-9800(70)80020-5","DOIUrl":null,"url":null,"abstract":"<div><p>The theory of Hadamard matrices is concerned with finding maximal sets of orthogonal vectors whose components are +1's and −1's. A natural generalization of this problem is to allow entries other than ±1's or to allow entries from some fixed field or ring. In the case of an arbitrary field or ring there may be “orthogonal” sets of “vectors” whose cardinality exceeds the “dimension” of the space. The purpose of this paper is to obtain an explicit formula for the maximum cardinality of such an orthogonal set when the ring involved is <em>Z<sub>m</sub></em>, the integers modulo <em>m</em>.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 2","pages":"Pages 136-143"},"PeriodicalIF":0.0000,"publicationDate":"1970-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80020-5","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The theory of Hadamard matrices is concerned with finding maximal sets of orthogonal vectors whose components are +1's and −1's. A natural generalization of this problem is to allow entries other than ±1's or to allow entries from some fixed field or ring. In the case of an arbitrary field or ring there may be “orthogonal” sets of “vectors” whose cardinality exceeds the “dimension” of the space. The purpose of this paper is to obtain an explicit formula for the maximum cardinality of such an orthogonal set when the ring involved is Zm, the integers modulo m.

向量在Zm上的正交集合
Hadamard矩阵的理论是寻找正交向量的极大集,其分量为+1和- 1。这个问题的一个自然概括是允许除±1以外的条目,或者允许来自某个固定字段或环的条目。在任意域或环的情况下,可能存在“正交”的“向量”集合,其基数超过了空间的“维数”。本文的目的是得到当环为Zm,整数模为m时正交集的最大基数的显式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信