Long Legal Article Question Answering via Cascaded Key Segment Learning (Student Abstract)

Shugui Xie, Lin Li, Jingling Yuan, Qing Xie, Xiaohui Tao
{"title":"Long Legal Article Question Answering via Cascaded Key Segment Learning (Student Abstract)","authors":"Shugui Xie, Lin Li, Jingling Yuan, Qing Xie, Xiaohui Tao","doi":"10.1609/aaai.v37i13.27042","DOIUrl":null,"url":null,"abstract":"Current sentence-level evidence extraction based methods may lose the discourse coherence of legal articles since they tend to make the extracted sentences scattered over the article. To solve the problem, this paper proposes a Cascaded Answer-guided key segment learning framework for long Legal article Question Answering, namely CALQA. The framework consists of three cascaded modules: Sifter, Reader, and Responder. The Sifter transfers a long legal article into several segments and works in an answer-guided way by automatically sifting out key fact segments in a coarse-to-fine approach through multiple iterations. The Reader utilizes a set of attention mechanisms to obtain semantic representations of the question and key fact segments. Finally, considering it a multi-label classification task the Responder predicts final answers in a cascaded manner. CALQA outperforms state-of-the-art methods in CAIL 2021 Law dataset.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"32 1","pages":"16364-16365"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i13.27042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Current sentence-level evidence extraction based methods may lose the discourse coherence of legal articles since they tend to make the extracted sentences scattered over the article. To solve the problem, this paper proposes a Cascaded Answer-guided key segment learning framework for long Legal article Question Answering, namely CALQA. The framework consists of three cascaded modules: Sifter, Reader, and Responder. The Sifter transfers a long legal article into several segments and works in an answer-guided way by automatically sifting out key fact segments in a coarse-to-fine approach through multiple iterations. The Reader utilizes a set of attention mechanisms to obtain semantic representations of the question and key fact segments. Finally, considering it a multi-label classification task the Responder predicts final answers in a cascaded manner. CALQA outperforms state-of-the-art methods in CAIL 2021 Law dataset.
基于级联关键段学习的法律长文问答(学生摘要)
目前基于句子级证据提取的方法容易使提取的句子分散在文章中,从而失去了法律文章的语篇连贯性。为了解决这一问题,本文提出了一种用于法律长文问答的级联式答案引导关键段学习框架,即CALQA。该框架由三个级联模块组成:Sifter、Reader和Responder。Sifter将一篇冗长的法律文章分成几个部分,并通过多次迭代,以从粗到精的方式自动筛选出关键事实部分,以答案导向的方式工作。读者利用一套注意机制来获取问题和关键事实段的语义表示。最后,考虑到这是一个多标签分类任务,Responder以级联的方式预测最终答案。CALQA在CAIL 2021法律数据集中优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信