Qualitative analysis of A.P.A. solution for fractional order neutral stochastic evolution equations driven by G-Brownian motion

Q4 Mathematics
A. D. Nagargoje, V. C. Borkar, R. A. Muneshawar
{"title":"Qualitative analysis of A.P.A. solution for fractional order neutral stochastic evolution equations driven by G-Brownian motion","authors":"A. D. Nagargoje, V. C. Borkar, R. A. Muneshawar","doi":"10.28919/jmcs/7061","DOIUrl":null,"url":null,"abstract":"where A(γ) : D(A(γ)) ⊂ LG(F )→ LG(F ) is densely closed linear operator and the functions D,φ ,φ and ψ : LG(F )→ LG(F ) are jointly continuous. We drive square mean almost pseudo automorphic mild solution for fractional order neutral stochastic evolution equations driven by G-Brownian motion is obtain by using evolution operator theorem and fixed point theorem. Moreover, we prove that this mild solution of equation (1) is unique.","PeriodicalId":36607,"journal":{"name":"Journal of Mathematical and Computational Science","volume":"385 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/jmcs/7061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

where A(γ) : D(A(γ)) ⊂ LG(F )→ LG(F ) is densely closed linear operator and the functions D,φ ,φ and ψ : LG(F )→ LG(F ) are jointly continuous. We drive square mean almost pseudo automorphic mild solution for fractional order neutral stochastic evolution equations driven by G-Brownian motion is obtain by using evolution operator theorem and fixed point theorem. Moreover, we prove that this mild solution of equation (1) is unique.
g - brown运动驱动的分数阶中立型随机演化方程A.P.A.解的定性分析
其中A(γ): D(A(γ))∧LG(F)→LG(F)是密闭线性算子,函数D、φ、φ、ψ: LG(F)→LG(F)是联合连续的。利用演化算子定理和不动点定理,得到了由g -布朗运动驱动的分数阶中立型随机演化方程的平方均值几乎伪自同构温和解。并证明了方程(1)的温和解是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
158
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信