Space Shuffle: A Scalable, Flexible, and High-Bandwidth Data Center Network

Ye Yu, Chen Qian
{"title":"Space Shuffle: A Scalable, Flexible, and High-Bandwidth Data Center Network","authors":"Ye Yu, Chen Qian","doi":"10.1109/ICNP.2014.23","DOIUrl":null,"url":null,"abstract":"Data center applications require the network to be scalable and bandwidth-rich. Current data center network architectures often use rigid topologies to increase network bandwidth. A major limitation is that they can hardly support incremental network growth. Recent studies propose to use random interconnects to provide growth flexibility. However, routing on a random topology suffers from control and data plane scalability problems, because routing decisions require global information and forwarding state cannot be aggregated. In this paper, we design a novel flexible data center network architecture, Space Shuffle (S2), which applies greedy routing on multiple ring spaces to achieve high-throughput, scalability, and flexibility. The proposed greedy routing protocol of S2 effectively exploits the path diversity of densely connected topologies and enables key-based routing. Extensive experimental studies show that S2 provides high bisectional bandwidth and throughput, near-optimal routing path lengths, extremely small forwarding state, fairness among concurrent data flows, and resiliency to network failures.","PeriodicalId":6462,"journal":{"name":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","volume":"1 1","pages":"13-24"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2014.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Data center applications require the network to be scalable and bandwidth-rich. Current data center network architectures often use rigid topologies to increase network bandwidth. A major limitation is that they can hardly support incremental network growth. Recent studies propose to use random interconnects to provide growth flexibility. However, routing on a random topology suffers from control and data plane scalability problems, because routing decisions require global information and forwarding state cannot be aggregated. In this paper, we design a novel flexible data center network architecture, Space Shuffle (S2), which applies greedy routing on multiple ring spaces to achieve high-throughput, scalability, and flexibility. The proposed greedy routing protocol of S2 effectively exploits the path diversity of densely connected topologies and enables key-based routing. Extensive experimental studies show that S2 provides high bisectional bandwidth and throughput, near-optimal routing path lengths, extremely small forwarding state, fairness among concurrent data flows, and resiliency to network failures.
空间洗牌:一种可扩展、灵活、高带宽的数据中心网络
数据中心应用要求网络具有可扩展性和丰富的带宽。当前的数据中心网络架构通常使用刚性拓扑来增加网络带宽。一个主要的限制是它们很难支持网络的增量增长。最近的研究建议使用随机互连来提供增长灵活性。然而,随机拓扑上的路由存在控制和数据平面可伸缩性问题,因为路由决策需要全局信息,并且转发状态不能聚合。在本文中,我们设计了一种新的灵活的数据中心网络架构,空间Shuffle (S2),它在多个环空间上应用贪婪路由来实现高吞吐量、可扩展性和灵活性。提出的贪婪路由协议S2有效地利用了密集连接拓扑的路径多样性,实现了基于密钥的路由。大量的实验研究表明,S2提供了高的对分带宽和吞吐量、接近最优的路由路径长度、极小的转发状态、并发数据流之间的公平性以及对网络故障的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信