On the top-dimensional cohomology groups of congruence subgroups of SL(n, ℤ)

IF 2 1区 数学
Jeremy Miller, Peter Patzt, Andrew Putman
{"title":"On the top-dimensional cohomology groups of\ncongruence subgroups of SL(n, ℤ)","authors":"Jeremy Miller, Peter Patzt, Andrew Putman","doi":"10.2140/GT.2021.25.999","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma_n(p)$ be the level-$p$ principal congruence subgroup of $\\text{SL}_n(\\mathbb{Z})$. Borel-Serre proved that the cohomology of $\\Gamma_n(p)$ vanishes above degree $\\binom{n}{2}$. We study the cohomology in this top degree $\\binom{n}{2}$. Let $\\mathcal{T}_n(\\mathbb{Q})$ denote the Tits building of $\\text{SL}_n(\\mathbb{Q})$. Lee-Szczarba conjectured that $H^{\\binom{n}{2}}(\\Gamma_n(p))$ is isomorphic to $\\widetilde{H}_{n-2}(\\mathcal{T}_n(\\mathbb{Q})/\\Gamma_n(p))$ and proved that this holds for $p=3$. We partially prove and partially disprove this conjecture by showing that a natural map $H^{\\binom{n}{2}}(\\Gamma_n(p)) \\rightarrow \\widetilde{H}_{n-2}(\\mathcal{T}_n(\\mathbb{Q})/\\Gamma_n(p))$ is always surjective, but is only injective for $p \\leq 5$. In particular, we completely calculate $H^{\\binom{n}{2}}(\\Gamma_n(5))$ and improve known lower bounds for the ranks of $H^{\\binom{n}{2}}(\\Gamma_n(p))$ for $p \\geq 5$.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2021.25.999","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Let $\Gamma_n(p)$ be the level-$p$ principal congruence subgroup of $\text{SL}_n(\mathbb{Z})$. Borel-Serre proved that the cohomology of $\Gamma_n(p)$ vanishes above degree $\binom{n}{2}$. We study the cohomology in this top degree $\binom{n}{2}$. Let $\mathcal{T}_n(\mathbb{Q})$ denote the Tits building of $\text{SL}_n(\mathbb{Q})$. Lee-Szczarba conjectured that $H^{\binom{n}{2}}(\Gamma_n(p))$ is isomorphic to $\widetilde{H}_{n-2}(\mathcal{T}_n(\mathbb{Q})/\Gamma_n(p))$ and proved that this holds for $p=3$. We partially prove and partially disprove this conjecture by showing that a natural map $H^{\binom{n}{2}}(\Gamma_n(p)) \rightarrow \widetilde{H}_{n-2}(\mathcal{T}_n(\mathbb{Q})/\Gamma_n(p))$ is always surjective, but is only injective for $p \leq 5$. In particular, we completely calculate $H^{\binom{n}{2}}(\Gamma_n(5))$ and improve known lower bounds for the ranks of $H^{\binom{n}{2}}(\Gamma_n(p))$ for $p \geq 5$.
关于SL(n, n)的同余子群的顶维上同调群
设$\Gamma_n(p)$为$\text{SL}_n(\mathbb{Z})$的层- $p$主同余子群。Borel-Serre证明了$\Gamma_n(p)$的上同性在$\binom{n}{2}$以上就消失了。我们研究了这个上同次$\binom{n}{2}$。设$\mathcal{T}_n(\mathbb{Q})$表示$\text{SL}_n(\mathbb{Q})$的Tits建筑。Lee-Szczarba推测$H^{\binom{n}{2}}(\Gamma_n(p))$与$\widetilde{H}_{n-2}(\mathcal{T}_n(\mathbb{Q})/\Gamma_n(p))$是同构的,并证明了$p=3$也是如此。通过证明一个自然映射$H^{\binom{n}{2}}(\Gamma_n(p)) \rightarrow \widetilde{H}_{n-2}(\mathcal{T}_n(\mathbb{Q})/\Gamma_n(p))$总是满射,但只对$p \leq 5$是内射,我们部分地证明和部分地反驳了这个猜想。特别是,我们完全计算了$H^{\binom{n}{2}}(\Gamma_n(5))$,并改进了$p \geq 5$中$H^{\binom{n}{2}}(\Gamma_n(p))$的已知下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信