Convergence rate of Riemannian Hamiltonian Monte Carlo and faster polytope volume computation

Y. Lee, S. Vempala
{"title":"Convergence rate of Riemannian Hamiltonian Monte Carlo and faster polytope volume computation","authors":"Y. Lee, S. Vempala","doi":"10.1145/3188745.3188774","DOIUrl":null,"url":null,"abstract":"We give the first rigorous proof of the convergence of Riemannian Hamiltonian Monte Carlo, a general (and practical) method for sampling Gibbs distributions. Our analysis shows that the rate of convergence is bounded in terms of natural smoothness parameters of an associated Riemannian manifold. We then apply the method with the manifold defined by the log barrier function to the problems of (1) uniformly sampling a polytope and (2) computing its volume, the latter by extending Gaussian cooling to the manifold setting. In both cases, the total number of steps needed is O*(mn2/3), improving the state of the art. A key ingredient of our analysis is a proof of an analog of the KLS conjecture for Gibbs distributions over manifolds.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

We give the first rigorous proof of the convergence of Riemannian Hamiltonian Monte Carlo, a general (and practical) method for sampling Gibbs distributions. Our analysis shows that the rate of convergence is bounded in terms of natural smoothness parameters of an associated Riemannian manifold. We then apply the method with the manifold defined by the log barrier function to the problems of (1) uniformly sampling a polytope and (2) computing its volume, the latter by extending Gaussian cooling to the manifold setting. In both cases, the total number of steps needed is O*(mn2/3), improving the state of the art. A key ingredient of our analysis is a proof of an analog of the KLS conjecture for Gibbs distributions over manifolds.
黎曼-哈密顿-蒙特卡罗的收敛速度和更快的多面体体积计算
我们首次给出了黎曼-哈密顿-蒙特卡罗收敛性的严格证明,这是一种对吉布斯分布进行抽样的一般(实用)方法。我们的分析表明,收敛速度是由黎曼流形的自然平滑参数限定的。然后,我们将由对数阻挡函数定义的流形的方法应用于(1)均匀采样多面体和(2)计算其体积的问题,后者通过将高斯冷却扩展到流形设置。在这两种情况下,所需的总步骤数都是O*(mn2/3),提高了技术水平。我们分析的一个关键成分是证明了流形上吉布斯分布的KLS猜想的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信