Arriving at estimates of a rate and state fault friction model parameter using Bayesian inference and Markov chain Monte Carlo

Saumik Dana , Karthik Reddy Lyathakula
{"title":"Arriving at estimates of a rate and state fault friction model parameter using Bayesian inference and Markov chain Monte Carlo","authors":"Saumik Dana ,&nbsp;Karthik Reddy Lyathakula","doi":"10.1016/j.aiig.2022.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>The critical slip distance in rate and state model for fault friction in the study of potential earthquakes can vary wildly from micrometers to few me-ters depending on the length scale of the critically stressed fault. This makes it incredibly important to construct an inversion framework that provides good estimates of the critical slip distance purely based on the observed ac-celeration at the seismogram. To eventually construct a framework that takes noisy seismogram acceleration data as input and spits out robust estimates of critical slip distance as the output, we first present the performance of the framework for synthetic data. The framework is based on Bayesian inference and Markov chain Monte Carlo methods. The synthetic data is generated by adding noise to the acceleration output of spring-slider-damper idealization of the rate and state model as the forward model.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"2 ","pages":"Pages 171-178"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654412200003X/pdfft?md5=d2c0b7ab1c68a598ad266f5e72d9539f&pid=1-s2.0-S266654412200003X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654412200003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The critical slip distance in rate and state model for fault friction in the study of potential earthquakes can vary wildly from micrometers to few me-ters depending on the length scale of the critically stressed fault. This makes it incredibly important to construct an inversion framework that provides good estimates of the critical slip distance purely based on the observed ac-celeration at the seismogram. To eventually construct a framework that takes noisy seismogram acceleration data as input and spits out robust estimates of critical slip distance as the output, we first present the performance of the framework for synthetic data. The framework is based on Bayesian inference and Markov chain Monte Carlo methods. The synthetic data is generated by adding noise to the acceleration output of spring-slider-damper idealization of the rate and state model as the forward model.

利用贝叶斯推理和马尔可夫链蒙特卡罗方法得到了速率和状态故障摩擦模型参数的估计
在潜在地震研究中,断层摩擦速率和状态模型中的临界滑动距离可以根据临界应力断层的长度范围从微米到几米不等。这使得构建一个反演框架变得非常重要,该框架可以完全基于地震记录上观察到的加速度来提供对临界滑动距离的良好估计。为了最终构建一个以噪声地震加速度数据为输入并输出临界滑移距离的鲁棒估计的框架,我们首先介绍了该框架对合成数据的性能。该框架基于贝叶斯推理和马尔可夫链蒙特卡罗方法。将速率状态模型理想化为正演模型,在弹簧-滑块-阻尼器的加速度输出中加入噪声生成合成数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信