Busemann process and semi-infinite geodesics in Brownian last-passage percolation

IF 1.5 Q2 PHYSICS, MATHEMATICAL
T. Seppalainen, Evan L. Sorensen
{"title":"Busemann process and semi-infinite geodesics in Brownian last-passage percolation","authors":"T. Seppalainen, Evan L. Sorensen","doi":"10.1214/22-aihp1245","DOIUrl":null,"url":null,"abstract":". We prove the existence of semi-infinite geodesics for Brownian last-passage percolation (BLPP). Specifically, on a single event of probability one, there exist semi-infinite geodesics started from every space- time point and traveling in every asymptotic direction. Properties of these geodesics include uniqueness for a fixed initial point and direction, non-uniqueness for fixed direction but random initial points, and coalescence of all geodesics traveling in a common, fixed direction. Along the way, we prove that for fixed northeast and southwest directions, there almost surely exist no bi-infinite geodesics in the given directions. The semi-infinite geodesics are constructed from Busemann functions. Our starting point is a result of Alberts, Rassoul-Agha and Simper that established Busemann functions for fixed points and directions. Out of this, we construct the global process of Busemann functions simultaneously for all initial points and directions, and then the family of semi-infinite Busemann geodesics. The uncountable space of the semi-discrete setting requires extra consideration and leads to new phenomena, compared to discrete models.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 10

Abstract

. We prove the existence of semi-infinite geodesics for Brownian last-passage percolation (BLPP). Specifically, on a single event of probability one, there exist semi-infinite geodesics started from every space- time point and traveling in every asymptotic direction. Properties of these geodesics include uniqueness for a fixed initial point and direction, non-uniqueness for fixed direction but random initial points, and coalescence of all geodesics traveling in a common, fixed direction. Along the way, we prove that for fixed northeast and southwest directions, there almost surely exist no bi-infinite geodesics in the given directions. The semi-infinite geodesics are constructed from Busemann functions. Our starting point is a result of Alberts, Rassoul-Agha and Simper that established Busemann functions for fixed points and directions. Out of this, we construct the global process of Busemann functions simultaneously for all initial points and directions, and then the family of semi-infinite Busemann geodesics. The uncountable space of the semi-discrete setting requires extra consideration and leads to new phenomena, compared to discrete models.
布朗末道渗流中的Busemann过程和半无限测地线
. 证明了布朗最后通道渗流(BLPP)的半无限测地线的存在性。具体地说,在概率为1的单个事件上,存在从每一个时空点出发,沿每一个渐近方向运动的半无限测地线。这些测地线的性质包括固定初始点和方向的唯一性,固定方向但随机初始点的非唯一性,以及所有测地线在公共固定方向上的聚并性。在此过程中,我们证明了对于固定的东北和西南方向,在给定方向上几乎肯定不存在双无穷测地线。利用Busemann函数构造了半无限测地线。我们的出发点是Alberts, Rassoul-Agha和Simper的结果,他们为固定点和方向建立了Busemann函数。在此基础上,我们对所有初始点和方向同时构造了Busemann函数的全局过程,进而构造了半无限Busemann测地线族。与离散模型相比,半离散设置的不可数空间需要额外考虑并导致新现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信