Visualizing uncertainty in biological expression data

C. Holzhüter, A. Lex, D. Schmalstieg, Hans-Jörg Schulz, H. Schumann, M. Streit
{"title":"Visualizing uncertainty in biological expression data","authors":"C. Holzhüter, A. Lex, D. Schmalstieg, Hans-Jörg Schulz, H. Schumann, M. Streit","doi":"10.1117/12.908516","DOIUrl":null,"url":null,"abstract":"Expression analysis of ~omics data using microarrays has become a standard procedure in the life sciences. \nHowever, microarrays are subject to technical limitations and errors, which render the data gathered likely to \nbe uncertain. While a number of approaches exist to target this uncertainty statistically, it is hardly ever even \nshown when the data is visualized using for example clustered heatmaps. Yet, this is highly useful when trying \nnot to omit data that is \"good enough\" for an analysis, which otherwise would be discarded as too unreliable \nby established conservative thresholds. Our approach addresses this shortcoming by first identifying the margin \nabove the error threshold of uncertain, yet possibly still useful data. It then displays this uncertain data in \nthe context of the valid data by enhancing a clustered heatmap. We employ different visual representations for \nthe different kinds of uncertainty involved. Finally, it lets the user interactively adjust the thresholds, giving \nvisual feedback in the heatmap representation, so that an informed choice on which thresholds to use can be \nmade instead of applying the usual rule-of-thumb cut-offs. We exemplify the usefulness of our concept by giving \ndetails for a concrete use case from our partners at the Medical University of Graz, thereby demonstrating our \nimplementation of the general approach.","PeriodicalId":89305,"journal":{"name":"Visualization and data analysis","volume":"36 1","pages":"82940O"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.908516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Expression analysis of ~omics data using microarrays has become a standard procedure in the life sciences. However, microarrays are subject to technical limitations and errors, which render the data gathered likely to be uncertain. While a number of approaches exist to target this uncertainty statistically, it is hardly ever even shown when the data is visualized using for example clustered heatmaps. Yet, this is highly useful when trying not to omit data that is "good enough" for an analysis, which otherwise would be discarded as too unreliable by established conservative thresholds. Our approach addresses this shortcoming by first identifying the margin above the error threshold of uncertain, yet possibly still useful data. It then displays this uncertain data in the context of the valid data by enhancing a clustered heatmap. We employ different visual representations for the different kinds of uncertainty involved. Finally, it lets the user interactively adjust the thresholds, giving visual feedback in the heatmap representation, so that an informed choice on which thresholds to use can be made instead of applying the usual rule-of-thumb cut-offs. We exemplify the usefulness of our concept by giving details for a concrete use case from our partners at the Medical University of Graz, thereby demonstrating our implementation of the general approach.
可视化生物表达数据的不确定性
使用微阵列对~组学数据进行表达分析已经成为生命科学的标准程序。然而,微阵列受到技术限制和错误的影响,这使得收集到的数据可能不确定。虽然有许多方法可以在统计上针对这种不确定性,但当使用聚类热图等方法将数据可视化时,几乎从未显示过这种不确定性。然而,当试图不忽略对分析来说“足够好”的数据时,这是非常有用的,否则这些数据会因为既定的保守阈值太不可靠而被丢弃。我们的方法通过首先识别不确定但可能仍然有用的数据的误差阈值以上的裕度来解决这一缺点。然后,它通过增强聚类热图,在有效数据的上下文中显示这些不确定数据。对于不同类型的不确定性,我们采用不同的视觉表征。最后,它允许用户交互式地调整阈值,在热图表示中提供视觉反馈,这样就可以做出使用哪个阈值的明智选择,而不是应用通常的经验法则。我们通过提供我们在格拉茨医科大学的合作伙伴的具体用例的细节来举例说明我们的概念的有用性,从而展示了我们对一般方法的实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信