S. Irie, Yin Li, H. Kanki, Tomoko Ohyama, L. Deaven, Stefan Someo, Taka-Aki Sato
{"title":"Identification of Two Fas-Associated Phosphatase-1 (FAP-1) Promoters in Human Cancer Cells","authors":"S. Irie, Yin Li, H. Kanki, Tomoko Ohyama, L. Deaven, Stefan Someo, Taka-Aki Sato","doi":"10.3109/10425170109041336","DOIUrl":null,"url":null,"abstract":"Fas-associated phosphatase-1 (FAP-1) has been reported as a negative regulator of Fas-mediated signal transduction in human cancer cells. To obtain insights into the potential carcinogenesis of the FAP-1 gene, we investigated its transcriptional regulation in normal and cancerous cells. To identify the FAP-1 promoter sequences, we first isolated PI and cosmid clones that contained the regulatory region upstream from the FAP-1 gene by using the PCR products of 5′ rapid amplification of cDN A end (5′-RACE) as probes. Genomic analysis of positive clones revealed that the major FAP-1 mRNA was transcribed from its proximal promoter (pPRM) in all human cancer cell lines tested, but 1 additional large transcript derived from its distal promoter (dPRM) was found in the human colon cancer cell line DLD-1. This suggests that the FAP-1 gene may be aberrantly dysregulated in some types of human cancers, including colon carcinoma. Sequence analysis of the region upstream from the FAP-1 gene strongly suggests that the transcript of the FAP-1 gene may be controlled by a variety of transcriptional regulatory elements, including NF-κB, NF-IL6, and p53 in its 2 promoters. These results imply that the FAP-1 gene may be a target gene under the control of important apoptosis-related nuclear factors in human cancers.","PeriodicalId":11381,"journal":{"name":"DNA Sequence","volume":"51 1","pages":"519 - 526"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Sequence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10425170109041336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Fas-associated phosphatase-1 (FAP-1) has been reported as a negative regulator of Fas-mediated signal transduction in human cancer cells. To obtain insights into the potential carcinogenesis of the FAP-1 gene, we investigated its transcriptional regulation in normal and cancerous cells. To identify the FAP-1 promoter sequences, we first isolated PI and cosmid clones that contained the regulatory region upstream from the FAP-1 gene by using the PCR products of 5′ rapid amplification of cDN A end (5′-RACE) as probes. Genomic analysis of positive clones revealed that the major FAP-1 mRNA was transcribed from its proximal promoter (pPRM) in all human cancer cell lines tested, but 1 additional large transcript derived from its distal promoter (dPRM) was found in the human colon cancer cell line DLD-1. This suggests that the FAP-1 gene may be aberrantly dysregulated in some types of human cancers, including colon carcinoma. Sequence analysis of the region upstream from the FAP-1 gene strongly suggests that the transcript of the FAP-1 gene may be controlled by a variety of transcriptional regulatory elements, including NF-κB, NF-IL6, and p53 in its 2 promoters. These results imply that the FAP-1 gene may be a target gene under the control of important apoptosis-related nuclear factors in human cancers.