label.switching: An R Package for Dealing with the Label Switching Problem in MCMC Outputs

Panagiotis Papastamoulis
{"title":"label.switching: An R Package for Dealing with the Label Switching Problem in MCMC Outputs","authors":"Panagiotis Papastamoulis","doi":"10.18637/jss.v069.c01","DOIUrl":null,"url":null,"abstract":"Label switching is a well-known and fundamental problem in Bayesian estimation of mixture or hidden Markov models. In case that the prior distribution of the model parameters is the same for all states, then both the likelihood and posterior distribution are invariant to permutations of the parameters. This property makes Markov chain Monte Carlo (MCMC) samples simulated from the posterior distribution non-identifiable. In this paper, the \\pkg{label.switching} package is introduced. It contains one probabilistic and seven deterministic relabelling algorithms in order to post-process a given MCMC sample, provided by the user. Each method returns a set of permutations that can be used to reorder the MCMC output. Then, any parametric function of interest can be inferred using the reordered MCMC sample. A set of user-defined permutations is also accepted, allowing the researcher to benchmark new relabelling methods against the available ones","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/jss.v069.c01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

Label switching is a well-known and fundamental problem in Bayesian estimation of mixture or hidden Markov models. In case that the prior distribution of the model parameters is the same for all states, then both the likelihood and posterior distribution are invariant to permutations of the parameters. This property makes Markov chain Monte Carlo (MCMC) samples simulated from the posterior distribution non-identifiable. In this paper, the \pkg{label.switching} package is introduced. It contains one probabilistic and seven deterministic relabelling algorithms in order to post-process a given MCMC sample, provided by the user. Each method returns a set of permutations that can be used to reorder the MCMC output. Then, any parametric function of interest can be inferred using the reordered MCMC sample. A set of user-defined permutations is also accepted, allowing the researcher to benchmark new relabelling methods against the available ones
标签。交换:一个处理MCMC输出中标签交换问题的R包
标签切换是混合或隐马尔可夫模型贝叶斯估计中一个众所周知的基本问题。如果模型参数的先验分布对所有状态都相同,则参数的似然分布和后验分布对参数的排列都是不变的。这一性质使得从后验分布模拟的马尔可夫链蒙特卡罗(MCMC)样本不可识别。在本文中,\pkg{标签。介绍了交换}包。它包含一种概率和七种确定性重新标记算法,以便对用户提供的给定MCMC样本进行后处理。每个方法返回一组排列,可用于对MCMC输出进行重新排序。然后,可以使用重新排序的MCMC样本推断出任何感兴趣的参数函数。一组用户定义的排列也被接受,允许研究人员对新的重新标记方法进行基准测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信