UAV degradation identification for pilot notification using machine learning techniques

A. Manukyan, M. Olivares-Méndez, Tegawendé F. Bissyandé, H. Voos, Yves Le Traon
{"title":"UAV degradation identification for pilot notification using machine learning techniques","authors":"A. Manukyan, M. Olivares-Méndez, Tegawendé F. Bissyandé, H. Voos, Yves Le Traon","doi":"10.1109/ETFA.2016.7733537","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicles are currently investigated as an important sub-domain of robotics, a fast growing and truly multidisciplinary research field. UAVs are increasingly deployed in real-world settings for missions in dangerous environments or in environments which are challenging to access. Combined with autonomous flying capabilities, many new possibilities, but also challenges, open up. To overcome the challenge of early identification of degradation, machine learning based on flight features is a promising direction. Existing approaches build classifiers that consider their features to be correlated. This prevents a fine-grained detection of degradation for the different hardware components. This work presents an approach where the data is considered uncorrelated and, using machine learning techniques, allows the precise identification of UAV's damages.","PeriodicalId":6483,"journal":{"name":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"66 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2016.7733537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Unmanned Aerial Vehicles are currently investigated as an important sub-domain of robotics, a fast growing and truly multidisciplinary research field. UAVs are increasingly deployed in real-world settings for missions in dangerous environments or in environments which are challenging to access. Combined with autonomous flying capabilities, many new possibilities, but also challenges, open up. To overcome the challenge of early identification of degradation, machine learning based on flight features is a promising direction. Existing approaches build classifiers that consider their features to be correlated. This prevents a fine-grained detection of degradation for the different hardware components. This work presents an approach where the data is considered uncorrelated and, using machine learning techniques, allows the precise identification of UAV's damages.
基于机器学习技术的飞行员通知无人机退化识别
无人机是目前机器人技术的一个重要分支,是一个快速发展的真正的多学科研究领域。无人机越来越多地部署在现实环境中,在危险环境或具有挑战性的环境中执行任务。结合自主飞行能力,许多新的可能性,但也挑战,打开。为了克服早期识别退化的挑战,基于飞行特征的机器学习是一个很有前途的方向。现有方法构建的分类器认为它们的特征是相关的。这阻止了对不同硬件组件的降级进行细粒度检测。这项工作提出了一种方法,其中数据被认为是不相关的,并且使用机器学习技术,可以精确识别无人机的损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信