PATCHWISE REPRODUCING POLYNOMIAL PARTICLE METHOD FOR THICK PLATES

IF 0.3 Q4 MATHEMATICS, APPLIED
Hyunju Kim, Bongsoo Jang
{"title":"PATCHWISE REPRODUCING POLYNOMIAL PARTICLE METHOD FOR THICK PLATES","authors":"Hyunju Kim, Bongsoo Jang","doi":"10.12941/JKSIAM.2013.17.067","DOIUrl":null,"url":null,"abstract":"Reproducing Polynomial Particle Method (RPPM) is one of meshless methods that use meshes minimally or do not use meshes at all. In this paper, the RPPM is employed for free vibration analysis of shear-deformable plates of the first order shear deformation model (FSDT), called Reissner-Mindlin plate. For numerical implementation, we use flat-top partition of unity functions, introduced by Oh et al, and patchwise RPPM in which approximation functions have high order polynomial reproducing property and the Kronecker delta property. Also, we demonstrate that our method is highly effective than other existing results for various aspect ratios and boundary conditions.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"22 1","pages":"67-85"},"PeriodicalIF":0.3000,"publicationDate":"2013-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2013.17.067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Reproducing Polynomial Particle Method (RPPM) is one of meshless methods that use meshes minimally or do not use meshes at all. In this paper, the RPPM is employed for free vibration analysis of shear-deformable plates of the first order shear deformation model (FSDT), called Reissner-Mindlin plate. For numerical implementation, we use flat-top partition of unity functions, introduced by Oh et al, and patchwise RPPM in which approximation functions have high order polynomial reproducing property and the Kronecker delta property. Also, we demonstrate that our method is highly effective than other existing results for various aspect ratios and boundary conditions.
厚板的分段多项式粒子再现方法
再现多项式粒子法(RPPM)是一种使用网格最少或根本不使用网格的无网格方法。本文将RPPM用于一阶剪切变形模型(FSDT)的剪切变形板(Reissner-Mindlin板)的自由振动分析。对于数值实现,我们使用了Oh等人引入的单位函数的平顶配分和patchwise RPPM,其中近似函数具有高阶多项式再现性质和Kronecker delta性质。此外,我们还证明了我们的方法在各种宽高比和边界条件下比其他现有结果更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信