Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization

IF 1.1 Q2 MATHEMATICS, APPLIED
O. Qasim, Ahmed Entesar, W. Al-Hayani
{"title":"Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization","authors":"O. Qasim, Ahmed Entesar, W. Al-Hayani","doi":"10.3934/NACO.2021001","DOIUrl":null,"url":null,"abstract":"In this paper, Lyapunov's artificial small parameter method (LASPM) with continuous particle swarm optimization (CPSO) is presented and used for solving nonlinear differential equations. The proposed method, LASPM-CPSO, is based on estimating the \\begin{document}$ \\varepsilon $\\end{document} parameter in LASPM through a PSO algorithm and based on a proposed objective function. Three different examples are used to evaluate the proposed method LASPM-CPSO, and compare it with the classical method LASPM through different intervals of the domain. The results from the maximum absolute error (MAE) and mean squared error (MSE) obtained through the given examples show the reliability and efficiency of the proposed LASPM-CPSO method, compared to the classical method LASPM.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"382 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/NACO.2021001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, Lyapunov's artificial small parameter method (LASPM) with continuous particle swarm optimization (CPSO) is presented and used for solving nonlinear differential equations. The proposed method, LASPM-CPSO, is based on estimating the \begin{document}$ \varepsilon $\end{document} parameter in LASPM through a PSO algorithm and based on a proposed objective function. Three different examples are used to evaluate the proposed method LASPM-CPSO, and compare it with the classical method LASPM through different intervals of the domain. The results from the maximum absolute error (MAE) and mean squared error (MSE) obtained through the given examples show the reliability and efficiency of the proposed LASPM-CPSO method, compared to the classical method LASPM.
用Lyapunov人工小参数与连续粒子群优化的混合方法求解非线性微分方程
In this paper, Lyapunov's artificial small parameter method (LASPM) with continuous particle swarm optimization (CPSO) is presented and used for solving nonlinear differential equations. The proposed method, LASPM-CPSO, is based on estimating the \begin{document}$ \varepsilon $\end{document} parameter in LASPM through a PSO algorithm and based on a proposed objective function. Three different examples are used to evaluate the proposed method LASPM-CPSO, and compare it with the classical method LASPM through different intervals of the domain. The results from the maximum absolute error (MAE) and mean squared error (MSE) obtained through the given examples show the reliability and efficiency of the proposed LASPM-CPSO method, compared to the classical method LASPM.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信