{"title":"Meta-Material Layout for the Blast Protection of Above-Ground Steel Pipes","authors":"Miltiadis Kontogeorgos, C. Fuggini","doi":"10.3390/geotechnics3030032","DOIUrl":null,"url":null,"abstract":"The current study investigates the capacity of the proposed meta-material layout for the blast protection of above-ground steel pipes against explosions. The philosophy of the meta-material layout’s design is described adequately, and the 1D periodic structures’ theory is adopted for the analytical prediction of the layout’s band-gaps. The special characteristics of the blast loading are explained, and specific time-related parameters are calculated. The layout is tested numerically for nine explosion scenarios of various magnitude via the finite element program ABAQUS, and the CONWEP model is selected for the simulation of the explosions. The results demonstrate a significant reduction in the maximum displacements developed on the pipe’s spring line and crown within a blast loading. This study composes an extension of the author’s previous research on buried steel pipes and surface explosion, advancing now the applicability of the meta-material layouts for the cases of above-ground steel pipes towards explosions and blast hazards. The outer goal is the investigation and the further spreading of the beneficial exploitation of meta-materials concepts for the scope of the pipelines’ effective blast protection, readdressing that this way is a major hazard for this type of structure and a gap in the current literature.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"184 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3030032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current study investigates the capacity of the proposed meta-material layout for the blast protection of above-ground steel pipes against explosions. The philosophy of the meta-material layout’s design is described adequately, and the 1D periodic structures’ theory is adopted for the analytical prediction of the layout’s band-gaps. The special characteristics of the blast loading are explained, and specific time-related parameters are calculated. The layout is tested numerically for nine explosion scenarios of various magnitude via the finite element program ABAQUS, and the CONWEP model is selected for the simulation of the explosions. The results demonstrate a significant reduction in the maximum displacements developed on the pipe’s spring line and crown within a blast loading. This study composes an extension of the author’s previous research on buried steel pipes and surface explosion, advancing now the applicability of the meta-material layouts for the cases of above-ground steel pipes towards explosions and blast hazards. The outer goal is the investigation and the further spreading of the beneficial exploitation of meta-materials concepts for the scope of the pipelines’ effective blast protection, readdressing that this way is a major hazard for this type of structure and a gap in the current literature.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.