KAM, α-Gevrey regularity and the α-Bruno-Rüssmann condition

IF 1.2 2区 数学 Q1 MATHEMATICS
Abed Bounemoura, J. Féjoz
{"title":"KAM, α-Gevrey regularity and the α-Bruno-Rüssmann condition","authors":"Abed Bounemoura, J. Féjoz","doi":"10.2422/2036-2145.201707_009","DOIUrl":null,"url":null,"abstract":"We prove a new invariant torus theorem, for α-Gevrey smooth Hamiltonian systems , under an arithmetic assumption which we call the α-Bruno-Russmann condition , and which reduces to the classical Bruno-Russmann condition in the analytic category. Our proof is direct in the sense that, for analytic Hamiltonians, we avoid the use of complex extensions and, for non-analytic Hamiltonians, we do not use analytic approximation nor smoothing operators. Following Bessi, we also show that if a slightly weaker arithmetic condition is not satisfied, the invariant torus may be destroyed. Crucial to this work are new functional estimates in the Gevrey class.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"46 1","pages":"1225-1279"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201707_009","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

Abstract

We prove a new invariant torus theorem, for α-Gevrey smooth Hamiltonian systems , under an arithmetic assumption which we call the α-Bruno-Russmann condition , and which reduces to the classical Bruno-Russmann condition in the analytic category. Our proof is direct in the sense that, for analytic Hamiltonians, we avoid the use of complex extensions and, for non-analytic Hamiltonians, we do not use analytic approximation nor smoothing operators. Following Bessi, we also show that if a slightly weaker arithmetic condition is not satisfied, the invariant torus may be destroyed. Crucial to this work are new functional estimates in the Gevrey class.
α-Gevrey正则性和α- bruno - r ssmann条件
在α-Bruno-Russmann条件的算术假设下,证明了α-Gevrey光滑哈密顿系统的一个新的不变环面定理,并将其简化为解析范畴中的经典Bruno-Russmann条件。我们的证明在某种意义上是直接的,对于解析哈密顿量,我们避免使用复扩展,对于非解析哈密顿量,我们不使用解析逼近或平滑算子。继Bessi之后,我们还证明了如果不满足稍弱的算术条件,不变环面可能被破坏。对这项工作至关重要的是Gevrey类的新功能估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信