CONVECTIVE FLOW AND HEAT TRANSFER OF NANO-ENCAPSULATED PHASE CHANGE MATERIAL (NEPCM) DISPERSIONS ALONG A VERTICAL SURFACE

IF 10.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL
M. Ghalambaz, Haichuan Jin, A. Bagheri, O. Younis, D. Wen
{"title":"CONVECTIVE FLOW AND HEAT TRANSFER OF NANO-ENCAPSULATED PHASE CHANGE MATERIAL (NEPCM) DISPERSIONS ALONG A VERTICAL SURFACE","authors":"M. Ghalambaz, Haichuan Jin, A. Bagheri, O. Younis, D. Wen","doi":"10.22190/fume220603034g","DOIUrl":null,"url":null,"abstract":"Nano-encapsulated phase change suspension is a novel type of functional fluid in which the nanoparticles undergo phase change that contribute to heat transfer. Thus, the working fluid carries heat not only by sensible heat but also in the form of latent heat stored in the particles. The natural convection and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) suspensions within a boundary layer along a heated flat surface are theoretically investigated in this work. The nanoparticles are core-shell structured with the core fabricated from PCMs covered by a solid shell. A similarity solution approach along with the finite element method is employed to address the phenomena. The outcomes indicate that a decisive factor in boosting the heat transfer is the temperature at which NEPCM particles undergo the phase transition. The heat transfer parameter can be enhanced by about 25% by just adding 5% of NEPCM particles, compared to the case with no NEPCM particles.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"104 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22190/fume220603034g","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 8

Abstract

Nano-encapsulated phase change suspension is a novel type of functional fluid in which the nanoparticles undergo phase change that contribute to heat transfer. Thus, the working fluid carries heat not only by sensible heat but also in the form of latent heat stored in the particles. The natural convection and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) suspensions within a boundary layer along a heated flat surface are theoretically investigated in this work. The nanoparticles are core-shell structured with the core fabricated from PCMs covered by a solid shell. A similarity solution approach along with the finite element method is employed to address the phenomena. The outcomes indicate that a decisive factor in boosting the heat transfer is the temperature at which NEPCM particles undergo the phase transition. The heat transfer parameter can be enhanced by about 25% by just adding 5% of NEPCM particles, compared to the case with no NEPCM particles.
纳米封装相变材料(nepcm)沿垂直表面分散的对流流动和传热
纳米封装相变悬浮液是一种新型的功能流体,其中纳米颗粒发生相变,有助于传热。因此,工作流体不仅以显热的形式携带热量,而且以潜热的形式储存在颗粒中。本文从理论上研究了纳米封装相变材料(NEPCMs)悬浮液沿加热平面在边界层内的自然对流和热传递。纳米颗粒是核-壳结构,核心由PCMs制成,并覆盖一层固体壳。采用相似解法和有限元法来解决这一现象。结果表明,NEPCM颗粒发生相变时的温度是促进传热的决定性因素。与不添加NEPCM颗粒相比,添加5%的NEPCM颗粒可使传热参数提高约25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.40
自引率
2.50%
发文量
12
审稿时长
6 weeks
期刊介绍: Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信