Coincidence Coefficients of Two Space Lattices and Their Lattice Planes

July 16 Pub Date : 1982-07-16 DOI:10.1002/PSSA.2210720135
Q. B. Yang
{"title":"Coincidence Coefficients of Two Space Lattices and Their Lattice Planes","authors":"Q. B. Yang","doi":"10.1002/PSSA.2210720135","DOIUrl":null,"url":null,"abstract":"Universal and straight-forward formulae to find the coincidence coefficients of two space lattices and their lattice planes are given by means of elementary theory of numbers. The coincidence coefficient of two space lattices is α2 = kk/d3, and that of their lattice planes is α = α2(CH(2)). \n \n \n \nEine universelle und direkte Formel zur Auffindung der Koinzidenzkoeffizienten zweier Gitter und ihrer Gitterebenen wird mittels elementarer Zahlentheorie angegeben. Der Koinzidenzkoeffizient zweier Raumgitter betragt α2 = kk/d3 und der ihrer Gitterebenen α = α2(CH(2)).","PeriodicalId":17793,"journal":{"name":"July 16","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1982-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"July 16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSA.2210720135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Universal and straight-forward formulae to find the coincidence coefficients of two space lattices and their lattice planes are given by means of elementary theory of numbers. The coincidence coefficient of two space lattices is α2 = kk/d3, and that of their lattice planes is α = α2(CH(2)). Eine universelle und direkte Formel zur Auffindung der Koinzidenzkoeffizienten zweier Gitter und ihrer Gitterebenen wird mittels elementarer Zahlentheorie angegeben. Der Koinzidenzkoeffizient zweier Raumgitter betragt α2 = kk/d3 und der ihrer Gitterebenen α = α2(CH(2)).
两个空间格及其格平面的重合系数
宇宙拉提斯和两个较大空间的交叉方程计划均由数字基本理论制定。《coincidence coefficient of二号太空lattices是α2 = kk / d3,鞋的形状的lattice计划是α=α2 (f) . (2)以基本数值理论确定两个网格及其位值的共同和直接公式。在一两个Raumgitter Koinzidenzkoeffizient betragtα2 = kk / d3和其Gitterebenenα=α2 (f) . (2)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信