Mean square values of L-functions over subgroups for nonprimitive characters, Dedekind sums and bounds on relative class numbers

IF 0.6 3区 数学 Q3 MATHEMATICS
S. Louboutin, Marc Munsch
{"title":"Mean square values of L-functions over subgroups for nonprimitive characters, Dedekind sums and bounds on relative class numbers","authors":"S. Louboutin, Marc Munsch","doi":"10.4153/S0008414X2300010X","DOIUrl":null,"url":null,"abstract":"Abstract An explicit formula for the mean value of \n$\\vert L(1,\\chi )\\vert ^2$\n is known, where \n$\\chi $\n runs over all odd primitive Dirichlet characters of prime conductors p. Bounds on the relative class number of the cyclotomic field \n${\\mathbb Q}(\\zeta _p)$\n follow. Lately, the authors obtained that the mean value of \n$\\vert L(1,\\chi )\\vert ^2$\n is asymptotic to \n$\\pi ^2/6$\n , where \n$\\chi $\n runs over all odd primitive Dirichlet characters of prime conductors \n$p\\equiv 1\\ \\ \\pmod {2d}$\n which are trivial on a subgroup H of odd order d of the multiplicative group \n$({\\mathbb Z}/p{\\mathbb Z})^*$\n , provided that \n$d\\ll \\frac {\\log p}{\\log \\log p}$\n . Bounds on the relative class number of the subfield of degree \n$\\frac {p-1}{2d}$\n of the cyclotomic field \n${\\mathbb Q}(\\zeta _p)$\n follow. Here, for a given integer \n$d_0>1$\n , we consider the same questions for the nonprimitive odd Dirichlet characters \n$\\chi '$\n modulo \n$d_0p$\n induced by the odd primitive characters \n$\\chi $\n modulo p. We obtain new estimates for Dedekind sums and deduce that the mean value of \n$\\vert L(1,\\chi ')\\vert ^2$\n is asymptotic to \n$\\frac {\\pi ^2}{6}\\prod _{q\\mid d_0}\\left (1-\\frac {1}{q^2}\\right )$\n , where \n$\\chi $\n runs over all odd primitive Dirichlet characters of prime conductors p which are trivial on a subgroup H of odd order \n$d\\ll \\frac {\\log p}{\\log \\log p}$\n . As a consequence, we improve the previous bounds on the relative class number of the subfield of degree \n$\\frac {p-1}{2d}$\n of the cyclotomic field \n${\\mathbb Q}(\\zeta _p)$\n . Moreover, we give a method to obtain explicit formulas and use Mersenne primes to show that our restriction on d is essentially sharp.","PeriodicalId":55284,"journal":{"name":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008414X2300010X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract An explicit formula for the mean value of $\vert L(1,\chi )\vert ^2$ is known, where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors p. Bounds on the relative class number of the cyclotomic field ${\mathbb Q}(\zeta _p)$ follow. Lately, the authors obtained that the mean value of $\vert L(1,\chi )\vert ^2$ is asymptotic to $\pi ^2/6$ , where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors $p\equiv 1\ \ \pmod {2d}$ which are trivial on a subgroup H of odd order d of the multiplicative group $({\mathbb Z}/p{\mathbb Z})^*$ , provided that $d\ll \frac {\log p}{\log \log p}$ . Bounds on the relative class number of the subfield of degree $\frac {p-1}{2d}$ of the cyclotomic field ${\mathbb Q}(\zeta _p)$ follow. Here, for a given integer $d_0>1$ , we consider the same questions for the nonprimitive odd Dirichlet characters $\chi '$ modulo $d_0p$ induced by the odd primitive characters $\chi $ modulo p. We obtain new estimates for Dedekind sums and deduce that the mean value of $\vert L(1,\chi ')\vert ^2$ is asymptotic to $\frac {\pi ^2}{6}\prod _{q\mid d_0}\left (1-\frac {1}{q^2}\right )$ , where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors p which are trivial on a subgroup H of odd order $d\ll \frac {\log p}{\log \log p}$ . As a consequence, we improve the previous bounds on the relative class number of the subfield of degree $\frac {p-1}{2d}$ of the cyclotomic field ${\mathbb Q}(\zeta _p)$ . Moreover, we give a method to obtain explicit formulas and use Mersenne primes to show that our restriction on d is essentially sharp.
非基元字符子群上l -函数的均方值、Dedekind和及相对类数的界
摘要:已知$\vert L(1,\chi )\vert ^2$均值的显式公式,其中$\chi $遍历素导体p的所有奇本原Dirichlet特征,并给出了分圈场${\mathbb Q}(\zeta _p)$的相对类数的界。最近,作者得到了$\vert L(1,\chi )\vert ^2$的均值渐近于$\pi ^2/6$,其中$\chi $遍历所有在乘群$({\mathbb Z}/p{\mathbb Z})^*$的奇阶d子群H上平凡的素导体$p\equiv 1\ \ \pmod {2d}$的奇原始狄利克雷特征,只要$d\ll \frac {\log p}{\log \log p}$。切圆场${\mathbb Q}(\zeta _p)$度的子场$\frac {p-1}{2d}$的相对类数的界限如下。这里,对于一个给定的整数$d_0>1$,我们考虑了由奇数原始字符$\chi $ modulo p引起的非原始奇数Dirichlet字符$\chi '$ modulo $d_0p$的相同问题。我们得到了Dedekind和的新估计,并推导出$\vert L(1,\chi ')\vert ^2$的平均值渐近于$\frac {\pi ^2}{6}\prod _{q\mid d_0}\left (1-\frac {1}{q^2}\right )$。其中$\chi $遍历素导体p的所有奇原始狄利克雷特征,这些特征在奇阶子群H上是平凡的$d\ll \frac {\log p}{\log \log p}$。因此,我们改进了先前关于分环场${\mathbb Q}(\zeta _p)$的度数为$\frac {p-1}{2d}$的子场的相对类数的界。此外,我们给出了一种获得显式公式的方法,并利用梅森素数证明了我们对d的限制本质上是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
58
审稿时长
4.5 months
期刊介绍: The Canadian Journal of Mathematics (CJM) publishes original, high-quality research papers in all branches of mathematics. The Journal is a flagship publication of the Canadian Mathematical Society and has been published continuously since 1949. New research papers are published continuously online and collated into print issues six times each year. To be submitted to the Journal, papers should be at least 18 pages long and may be written in English or in French. Shorter papers should be submitted to the Canadian Mathematical Bulletin. Le Journal canadien de mathématiques (JCM) publie des articles de recherche innovants de grande qualité dans toutes les branches des mathématiques. Publication phare de la Société mathématique du Canada, il est publié en continu depuis 1949. En ligne, la revue propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés six fois par année. Les textes présentés au JCM doivent compter au moins 18 pages et être rédigés en anglais ou en français. C’est le Bulletin canadien de mathématiques qui reçoit les articles plus courts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信