{"title":"Effectiveness Enhancement of the Double Tube Heat Exchanger Using ZnO Nanofluid","authors":"H. Kadhim","doi":"10.52716/jprs.v12i2.660","DOIUrl":null,"url":null,"abstract":"In this study, the effect of adding zinc oxide nanoparticles to the reversible effect double tube heat exchanger with a length of 1.5 meters, an outer diameter of 19.0 mm, is made of copper material that is used by Nano water as a cold liquid. Zinc solid nanoparticles with a volume concentration of 3% were used with water as the base liquid. The cold nanoscale water flows into the real tube with a volume of 4 L/min which enters into the heat exchanger at 16°C, where the hot water flows into the separator of the heat exchanger representing a blank volume of 6 L/min. The Reynolds number range and flowrate ranges are 10000 to 20000 and 5 to 15 respectively. The heat exchanger was introduced at a temperature of 65°C. An improvement in the performance of the exchanger was shown in the case of using water with the addition of nanoparticles","PeriodicalId":16710,"journal":{"name":"Journal of Petroleum Research and Studies","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Research and Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52716/jprs.v12i2.660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, the effect of adding zinc oxide nanoparticles to the reversible effect double tube heat exchanger with a length of 1.5 meters, an outer diameter of 19.0 mm, is made of copper material that is used by Nano water as a cold liquid. Zinc solid nanoparticles with a volume concentration of 3% were used with water as the base liquid. The cold nanoscale water flows into the real tube with a volume of 4 L/min which enters into the heat exchanger at 16°C, where the hot water flows into the separator of the heat exchanger representing a blank volume of 6 L/min. The Reynolds number range and flowrate ranges are 10000 to 20000 and 5 to 15 respectively. The heat exchanger was introduced at a temperature of 65°C. An improvement in the performance of the exchanger was shown in the case of using water with the addition of nanoparticles