Effectiveness Enhancement of the Double Tube Heat Exchanger Using ZnO Nanofluid

H. Kadhim
{"title":"Effectiveness Enhancement of the Double Tube Heat Exchanger Using ZnO Nanofluid","authors":"H. Kadhim","doi":"10.52716/jprs.v12i2.660","DOIUrl":null,"url":null,"abstract":"In this study, the effect of adding zinc oxide nanoparticles to the reversible effect double tube heat exchanger with a length of 1.5 meters, an outer diameter of 19.0 mm, is made of copper material that is used by Nano water as a cold liquid. Zinc solid nanoparticles with a volume concentration of 3% were used with water as the base liquid. The cold nanoscale water flows into the real tube with a volume of 4 L/min which enters into the heat exchanger at 16°C, where the hot water flows into the separator of the heat exchanger representing a blank volume of 6 L/min. The Reynolds number range and flowrate ranges are 10000 to 20000 and 5 to 15 respectively. The heat exchanger was introduced at a temperature of 65°C. An improvement in the performance of the exchanger was shown in the case of using water with the addition of nanoparticles","PeriodicalId":16710,"journal":{"name":"Journal of Petroleum Research and Studies","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Research and Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52716/jprs.v12i2.660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, the effect of adding zinc oxide nanoparticles to the reversible effect double tube heat exchanger with a length of 1.5 meters, an outer diameter of 19.0 mm, is made of copper material that is used by Nano water as a cold liquid. Zinc solid nanoparticles with a volume concentration of 3% were used with water as the base liquid. The cold nanoscale water flows into the real tube with a volume of 4 L/min which enters into the heat exchanger at 16°C, where the hot water flows into the separator of the heat exchanger representing a blank volume of 6 L/min. The Reynolds number range and flowrate ranges are 10000 to 20000 and 5 to 15 respectively. The heat exchanger was introduced at a temperature of 65°C. An improvement in the performance of the exchanger was shown in the case of using water with the addition of nanoparticles
ZnO纳米流体增强双管换热器效能
在本研究中,将氧化锌纳米颗粒添加到长度为1.5米,外径为19.0 mm的可逆效应双管换热器中,该换热器由纳米水作为冷液使用的铜材料制成。采用体积浓度为3%的锌固体纳米颗粒,以水为基液。冷纳米级水以4l /min的体积流入实管,实管在16℃时进入热交换器,其中热水以6l /min的空白体积流入热交换器分离器。雷诺数范围为10000 ~ 20000,流量范围为5 ~ 15。在65℃的温度下引入热交换器。在加入纳米粒子的情况下,交换器的性能得到了改善
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信