Almost Kenmotsu manifolds admitting certain vector fields

D. Dey, P. Majhi
{"title":"Almost Kenmotsu manifolds admitting certain vector fields","authors":"D. Dey, P. Majhi","doi":"10.22034/KJM.2020.235131.1873","DOIUrl":null,"url":null,"abstract":"In the present paper, we characterize almost Kenmotsu manifolds admitting holomorphically planar conformal vector (HPCV) fields. We have shown that if an almost Kenmotsu manifold $M^{2n+1}$ admits a non-zero HPCV field $V$ such that $\\phi V = 0$, then $M^{2n+1}$ is locally a warped product of an almost Kaehler manifold and an open interval. As a corollary of this we obtain few classifications of an almost Kenmotsu manifold to be a Kenmotsu manifold and also prove that the integral manifolds of D are totally umbilical submanifolds of $M^{2n+1}$. Further, we prove that if an almost Kenmotsu manifold with positive constant $\\xi$-sectional curvature admits a non-zero HPCV field $V$, then either $M^{2n+1}$ is locally a warped product of an almost Kaehler manifold and an open interval or isometric to a sphere. Moreover, a $(k,\\mu)'$-almost Kenmotsu manifold admitting a HPCV field $V$ such that $\\phi V = 0$ is either locally isometric to $\\mathbb{H}^{n+1}(-4) \\times \\mathbb{R}^n$ or $V$ is an eigenvector of $h'$. Finally, an example is presented.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/KJM.2020.235131.1873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we characterize almost Kenmotsu manifolds admitting holomorphically planar conformal vector (HPCV) fields. We have shown that if an almost Kenmotsu manifold $M^{2n+1}$ admits a non-zero HPCV field $V$ such that $\phi V = 0$, then $M^{2n+1}$ is locally a warped product of an almost Kaehler manifold and an open interval. As a corollary of this we obtain few classifications of an almost Kenmotsu manifold to be a Kenmotsu manifold and also prove that the integral manifolds of D are totally umbilical submanifolds of $M^{2n+1}$. Further, we prove that if an almost Kenmotsu manifold with positive constant $\xi$-sectional curvature admits a non-zero HPCV field $V$, then either $M^{2n+1}$ is locally a warped product of an almost Kaehler manifold and an open interval or isometric to a sphere. Moreover, a $(k,\mu)'$-almost Kenmotsu manifold admitting a HPCV field $V$ such that $\phi V = 0$ is either locally isometric to $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$ or $V$ is an eigenvector of $h'$. Finally, an example is presented.
几乎Kenmotsu流形承认某些向量场
在本文中,我们刻画了具有全纯平面共形矢量场的几乎Kenmotsu流形。我们证明了如果一个几乎Kenmotsu流形$M^{2n+1}$允许一个非零HPCV场$V$使得$\phi V = 0$,那么$M^{2n+1}$是一个几乎Kaehler流形与开区间的局部翘曲积。作为这一结论的推论,我们得到了几乎Kenmotsu流形为Kenmotsu流形的几个分类,并证明了D的积分流形是$M^{2n+1}$的完全脐带子流形。进一步证明了如果一个具有正常数$\xi$ -截面曲率的几乎Kenmotsu流形存在一个非零HPCV场$V$,那么$M^{2n+1}$要么是一个几乎Kaehler流形与球面的开区间或等距的局部翘曲积。此外,承认HPCV场$V$的$(k,\mu)'$ -几乎Kenmotsu流形使得$\phi V = 0$与$\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$局部等距或$V$是$h'$的特征向量。最后给出了一个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信