{"title":"Almost Kenmotsu manifolds admitting certain vector fields","authors":"D. Dey, P. Majhi","doi":"10.22034/KJM.2020.235131.1873","DOIUrl":null,"url":null,"abstract":"In the present paper, we characterize almost Kenmotsu manifolds admitting holomorphically planar conformal vector (HPCV) fields. We have shown that if an almost Kenmotsu manifold $M^{2n+1}$ admits a non-zero HPCV field $V$ such that $\\phi V = 0$, then $M^{2n+1}$ is locally a warped product of an almost Kaehler manifold and an open interval. As a corollary of this we obtain few classifications of an almost Kenmotsu manifold to be a Kenmotsu manifold and also prove that the integral manifolds of D are totally umbilical submanifolds of $M^{2n+1}$. Further, we prove that if an almost Kenmotsu manifold with positive constant $\\xi$-sectional curvature admits a non-zero HPCV field $V$, then either $M^{2n+1}$ is locally a warped product of an almost Kaehler manifold and an open interval or isometric to a sphere. Moreover, a $(k,\\mu)'$-almost Kenmotsu manifold admitting a HPCV field $V$ such that $\\phi V = 0$ is either locally isometric to $\\mathbb{H}^{n+1}(-4) \\times \\mathbb{R}^n$ or $V$ is an eigenvector of $h'$. Finally, an example is presented.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/KJM.2020.235131.1873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the present paper, we characterize almost Kenmotsu manifolds admitting holomorphically planar conformal vector (HPCV) fields. We have shown that if an almost Kenmotsu manifold $M^{2n+1}$ admits a non-zero HPCV field $V$ such that $\phi V = 0$, then $M^{2n+1}$ is locally a warped product of an almost Kaehler manifold and an open interval. As a corollary of this we obtain few classifications of an almost Kenmotsu manifold to be a Kenmotsu manifold and also prove that the integral manifolds of D are totally umbilical submanifolds of $M^{2n+1}$. Further, we prove that if an almost Kenmotsu manifold with positive constant $\xi$-sectional curvature admits a non-zero HPCV field $V$, then either $M^{2n+1}$ is locally a warped product of an almost Kaehler manifold and an open interval or isometric to a sphere. Moreover, a $(k,\mu)'$-almost Kenmotsu manifold admitting a HPCV field $V$ such that $\phi V = 0$ is either locally isometric to $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$ or $V$ is an eigenvector of $h'$. Finally, an example is presented.